Spaces:
Sleeping
Sleeping
Create rag_utils.py
Browse files- rag_utils.py +36 -0
rag_utils.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import faiss
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoTokenizer, AutoModel
|
| 5 |
+
from sentence_transformers import SentenceTransformer
|
| 6 |
+
from PyPDF2 import PdfReader
|
| 7 |
+
|
| 8 |
+
class RAGRetriever:
|
| 9 |
+
def __init__(self):
|
| 10 |
+
self.encoder = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
| 11 |
+
self.index = faiss.IndexFlatL2(384)
|
| 12 |
+
self.contexts = []
|
| 13 |
+
self.ids = []
|
| 14 |
+
|
| 15 |
+
def add_document(self, text):
|
| 16 |
+
sentences = text.split("\n")
|
| 17 |
+
clean_sentences = [s.strip() for s in sentences if s.strip()]
|
| 18 |
+
embeddings = self.encoder.encode(clean_sentences)
|
| 19 |
+
self.index.add(embeddings)
|
| 20 |
+
self.contexts.extend(clean_sentences)
|
| 21 |
+
|
| 22 |
+
def retrieve(self, query, top_k=3):
|
| 23 |
+
q_vec = self.encoder.encode([query])
|
| 24 |
+
D, I = self.index.search(q_vec, top_k)
|
| 25 |
+
return [self.contexts[i] for i in I[0]]
|
| 26 |
+
|
| 27 |
+
def extract_text_from_file(file_path):
|
| 28 |
+
ext = os.path.splitext(file_path)[-1].lower()
|
| 29 |
+
if ext == ".txt":
|
| 30 |
+
with open(file_path, "r", encoding="utf-8") as f:
|
| 31 |
+
return f.read()
|
| 32 |
+
elif ext == ".pdf":
|
| 33 |
+
reader = PdfReader(file_path)
|
| 34 |
+
return "\n".join([page.extract_text() for page in reader.pages if page.extract_text()])
|
| 35 |
+
else:
|
| 36 |
+
return ""
|