Spaces:
Sleeping
Sleeping
Update evo_model.py
Browse files- evo_model.py +19 -16
evo_model.py
CHANGED
@@ -3,30 +3,33 @@ import torch.nn as nn
|
|
3 |
import torch.nn.functional as F
|
4 |
|
5 |
class EvoEncoder(nn.Module):
|
6 |
-
def __init__(self, d_model=
|
7 |
super().__init__()
|
8 |
-
self.embedding = nn.Embedding(30522, d_model)
|
9 |
-
|
10 |
-
|
11 |
-
nhead=nhead,
|
12 |
-
dim_feedforward=dim_feedforward,
|
13 |
-
batch_first=True,
|
14 |
-
)
|
15 |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
16 |
-
self.
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def forward(self, input_ids):
|
19 |
-
x = self.embedding(input_ids)
|
|
|
|
|
|
|
20 |
x = self.transformer(x)
|
21 |
-
x =
|
22 |
-
return
|
23 |
|
24 |
class EvoTransformer(nn.Module):
|
25 |
-
def __init__(self, d_model=
|
26 |
super().__init__()
|
27 |
-
self.encoder = EvoEncoder(d_model
|
28 |
-
self.classifier = nn.Linear(d_model,
|
29 |
|
30 |
def forward(self, input_ids):
|
31 |
x = self.encoder(input_ids)
|
32 |
-
return x
|
|
|
3 |
import torch.nn.functional as F
|
4 |
|
5 |
class EvoEncoder(nn.Module):
|
6 |
+
def __init__(self, d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, memory_enabled=True):
|
7 |
super().__init__()
|
8 |
+
self.embedding = nn.Embedding(30522, d_model)
|
9 |
+
self.positional_encoding = nn.Parameter(torch.zeros(1, 512, d_model))
|
10 |
+
encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=num_heads, dim_feedforward=ffn_dim, batch_first=True)
|
|
|
|
|
|
|
|
|
11 |
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
12 |
+
self.norm = nn.LayerNorm(d_model)
|
13 |
+
self.memory_enabled = memory_enabled
|
14 |
+
if memory_enabled:
|
15 |
+
self.memory_proj = nn.Linear(d_model, d_model)
|
16 |
+
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
|
17 |
|
18 |
def forward(self, input_ids):
|
19 |
+
x = self.embedding(input_ids) + self.positional_encoding[:, :input_ids.size(1), :]
|
20 |
+
if self.memory_enabled:
|
21 |
+
mem = self.memory_token.expand(x.size(0), -1, -1)
|
22 |
+
x = torch.cat([mem, x], dim=1)
|
23 |
x = self.transformer(x)
|
24 |
+
x = self.norm(x)
|
25 |
+
return x[:, 0] # Return [CLS]-like token (memory or first token)
|
26 |
|
27 |
class EvoTransformer(nn.Module):
|
28 |
+
def __init__(self, d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, num_classes=1, memory_enabled=True):
|
29 |
super().__init__()
|
30 |
+
self.encoder = EvoEncoder(d_model, num_heads, ffn_dim, num_layers, memory_enabled)
|
31 |
+
self.classifier = nn.Linear(d_model, num_classes)
|
32 |
|
33 |
def forward(self, input_ids):
|
34 |
x = self.encoder(input_ids)
|
35 |
+
return self.classifier(x)
|