Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update evo_model.py
Browse files- evo_model.py +18 -19
    	
        evo_model.py
    CHANGED
    
    | @@ -1,10 +1,18 @@ | |
| 1 | 
             
            import torch
         | 
| 2 | 
             
            import torch.nn as nn
         | 
|  | |
| 3 |  | 
| 4 | 
             
            class EvoEncoder(nn.Module):
         | 
| 5 | 
            -
                def __init__(self, d_model= | 
| 6 | 
             
                    super().__init__()
         | 
| 7 | 
             
                    self.embedding = nn.Embedding(30522, d_model)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 8 | 
             
                    encoder_layer = nn.TransformerEncoderLayer(
         | 
| 9 | 
             
                        d_model=d_model,
         | 
| 10 | 
             
                        nhead=num_heads,
         | 
| @@ -12,34 +20,25 @@ class EvoEncoder(nn.Module): | |
| 12 | 
             
                        batch_first=True
         | 
| 13 | 
             
                    )
         | 
| 14 | 
             
                    self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
         | 
| 15 | 
            -
                    self.memory_enabled = memory_enabled
         | 
| 16 | 
            -
                    if memory_enabled:
         | 
| 17 | 
            -
                        self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
         | 
| 18 | 
            -
                        self.memory_proj = nn.Linear(d_model, d_model)
         | 
| 19 |  | 
| 20 | 
             
                def forward(self, input_ids):
         | 
| 21 | 
             
                    x = self.embedding(input_ids)
         | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
|  | |
| 24 | 
             
                        x = torch.cat([mem, x], dim=1)
         | 
|  | |
| 25 | 
             
                    x = self.transformer(x)
         | 
| 26 | 
             
                    return x
         | 
| 27 |  | 
| 28 | 
             
            class EvoTransformerV22(nn.Module):
         | 
| 29 | 
             
                def __init__(self):
         | 
| 30 | 
             
                    super().__init__()
         | 
| 31 | 
            -
                    self.encoder = EvoEncoder(
         | 
| 32 | 
            -
             | 
| 33 | 
            -
             | 
| 34 | 
            -
                        ffn_dim=1024,
         | 
| 35 | 
            -
                        num_layers=6,
         | 
| 36 | 
            -
                        memory_enabled=True
         | 
| 37 | 
            -
                    )
         | 
| 38 | 
            -
                    self.pooling = nn.AdaptiveAvgPool1d(1)
         | 
| 39 | 
            -
                    self.classifier = nn.Linear(384, 2)
         | 
| 40 |  | 
| 41 | 
             
                def forward(self, input_ids):
         | 
| 42 | 
             
                    x = self.encoder(input_ids)
         | 
| 43 | 
            -
                    x = x. | 
| 44 | 
            -
                     | 
| 45 | 
            -
                    return self.classifier(x)
         | 
|  | |
| 1 | 
             
            import torch
         | 
| 2 | 
             
            import torch.nn as nn
         | 
| 3 | 
            +
            import torch.nn.functional as F
         | 
| 4 |  | 
| 5 | 
             
            class EvoEncoder(nn.Module):
         | 
| 6 | 
            +
                def __init__(self, d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, memory_enabled=True):
         | 
| 7 | 
             
                    super().__init__()
         | 
| 8 | 
             
                    self.embedding = nn.Embedding(30522, d_model)
         | 
| 9 | 
            +
                    self.memory_enabled = memory_enabled
         | 
| 10 | 
            +
                    if memory_enabled:
         | 
| 11 | 
            +
                        self.memory_proj = nn.Linear(d_model, d_model)
         | 
| 12 | 
            +
                        self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
         | 
| 13 | 
            +
                    else:
         | 
| 14 | 
            +
                        self.memory_token = None
         | 
| 15 | 
            +
             | 
| 16 | 
             
                    encoder_layer = nn.TransformerEncoderLayer(
         | 
| 17 | 
             
                        d_model=d_model,
         | 
| 18 | 
             
                        nhead=num_heads,
         | 
|  | |
| 20 | 
             
                        batch_first=True
         | 
| 21 | 
             
                    )
         | 
| 22 | 
             
                    self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
         | 
|  | |
|  | |
|  | |
|  | |
| 23 |  | 
| 24 | 
             
                def forward(self, input_ids):
         | 
| 25 | 
             
                    x = self.embedding(input_ids)
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                    if self.memory_enabled and self.memory_token is not None:
         | 
| 28 | 
            +
                        mem = self.memory_token.expand(x.size(0), 1, x.size(2))
         | 
| 29 | 
             
                        x = torch.cat([mem, x], dim=1)
         | 
| 30 | 
            +
             | 
| 31 | 
             
                    x = self.transformer(x)
         | 
| 32 | 
             
                    return x
         | 
| 33 |  | 
| 34 | 
             
            class EvoTransformerV22(nn.Module):
         | 
| 35 | 
             
                def __init__(self):
         | 
| 36 | 
             
                    super().__init__()
         | 
| 37 | 
            +
                    self.encoder = EvoEncoder(d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, memory_enabled=True)
         | 
| 38 | 
            +
                    self.pool = nn.AdaptiveAvgPool1d(1)
         | 
| 39 | 
            +
                    self.classifier = nn.Linear(512, 1)  # ✅ Matches checkpoint
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 40 |  | 
| 41 | 
             
                def forward(self, input_ids):
         | 
| 42 | 
             
                    x = self.encoder(input_ids)
         | 
| 43 | 
            +
                    x = self.pool(x.transpose(1, 2)).squeeze(-1)
         | 
| 44 | 
            +
                    return self.classifier(x)  # Output: [batch_size, 1]
         | 
|  | 
