Spaces:
Sleeping
Sleeping
Update retrain_from_feedback
Browse files- retrain_from_feedback +18 -19
retrain_from_feedback
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
# retrain_from_feedback.py
|
2 |
-
|
3 |
import torch
|
4 |
import torch.nn as nn
|
5 |
import torch.optim as optim
|
@@ -7,10 +5,11 @@ from torch.utils.data import DataLoader, Dataset
|
|
7 |
from transformers import AutoTokenizer
|
8 |
|
9 |
from evo_architecture import mutate_genome, default_config, log_genome
|
10 |
-
from model import EvoTransformerV22 #
|
11 |
import csv
|
12 |
import os
|
13 |
|
|
|
14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
|
16 |
class FeedbackDataset(Dataset):
|
@@ -23,11 +22,13 @@ class FeedbackDataset(Dataset):
|
|
23 |
return len(self.samples)
|
24 |
|
25 |
def __getitem__(self, idx):
|
26 |
-
q, o1, o2, ctx,
|
27 |
-
|
28 |
-
enc = self.tokenizer(
|
29 |
input_ids = enc["input_ids"].squeeze(0)
|
30 |
-
|
|
|
|
|
31 |
return input_ids, torch.tensor(label)
|
32 |
|
33 |
def load_feedback():
|
@@ -38,20 +39,19 @@ def load_feedback():
|
|
38 |
with open("feedback_log.csv", encoding="utf-8") as f:
|
39 |
reader = csv.DictReader(f)
|
40 |
for row in reader:
|
41 |
-
if row
|
42 |
data.append([
|
43 |
row["question"],
|
44 |
row["option1"],
|
45 |
row["option2"],
|
46 |
row["context"],
|
47 |
-
row["evo_output"]
|
48 |
-
"yes"
|
49 |
])
|
50 |
return data
|
51 |
|
52 |
def build_model(config):
|
53 |
from model import EvoEncoder
|
54 |
-
class
|
55 |
def __init__(self):
|
56 |
super().__init__()
|
57 |
self.encoder = EvoEncoder(
|
@@ -62,14 +62,14 @@ def build_model(config):
|
|
62 |
memory_enabled=config["memory_enabled"]
|
63 |
)
|
64 |
self.pool = nn.AdaptiveAvgPool1d(1)
|
65 |
-
self.classifier = nn.Linear(512,
|
66 |
|
67 |
def forward(self, input_ids):
|
68 |
x = self.encoder(input_ids)
|
69 |
x = self.pool(x.transpose(1, 2)).squeeze(-1)
|
70 |
return self.classifier(x)
|
71 |
|
72 |
-
return
|
73 |
|
74 |
def train_evo():
|
75 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
@@ -86,27 +86,26 @@ def train_evo():
|
|
86 |
dataset = FeedbackDataset(tokenizer, data)
|
87 |
loader = DataLoader(dataset, batch_size=4, shuffle=True)
|
88 |
|
89 |
-
loss_fn = nn.
|
90 |
optimizer = optim.Adam(model.parameters(), lr=1e-4)
|
91 |
|
92 |
for epoch in range(3):
|
93 |
total_loss, correct = 0, 0
|
94 |
for input_ids, labels in loader:
|
95 |
-
input_ids, labels = input_ids.to(device), labels.
|
96 |
-
logits = model(input_ids)
|
97 |
loss = loss_fn(logits, labels)
|
98 |
optimizer.zero_grad()
|
99 |
loss.backward()
|
100 |
optimizer.step()
|
101 |
|
102 |
total_loss += loss.item()
|
103 |
-
preds =
|
104 |
-
correct += (preds == labels
|
105 |
|
106 |
acc = correct / len(dataset)
|
107 |
print(f"✅ Epoch {epoch+1} | Loss={total_loss:.4f} | Acc={acc:.4f}")
|
108 |
|
109 |
-
# Save model + genome
|
110 |
os.makedirs("trained_model", exist_ok=True)
|
111 |
torch.save(model.state_dict(), "trained_model/evo_retrained.pt")
|
112 |
log_genome(new_config, acc)
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
import torch.optim as optim
|
|
|
5 |
from transformers import AutoTokenizer
|
6 |
|
7 |
from evo_architecture import mutate_genome, default_config, log_genome
|
8 |
+
from model import EvoTransformerV22 # Ensure this is compatible with config
|
9 |
import csv
|
10 |
import os
|
11 |
|
12 |
+
# Device setup
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
|
15 |
class FeedbackDataset(Dataset):
|
|
|
22 |
return len(self.samples)
|
23 |
|
24 |
def __getitem__(self, idx):
|
25 |
+
q, o1, o2, ctx, evo_ans = self.samples[idx]
|
26 |
+
prompt = f"{q} [SEP] {o1} [SEP] {o2} [SEP] {ctx}"
|
27 |
+
enc = self.tokenizer(prompt, padding="max_length", truncation=True, max_length=self.max_len, return_tensors="pt")
|
28 |
input_ids = enc["input_ids"].squeeze(0)
|
29 |
+
|
30 |
+
# Label: 0 if Evo picked option1, else 1
|
31 |
+
label = 0 if evo_ans.strip().lower() == o1.strip().lower() else 1
|
32 |
return input_ids, torch.tensor(label)
|
33 |
|
34 |
def load_feedback():
|
|
|
39 |
with open("feedback_log.csv", encoding="utf-8") as f:
|
40 |
reader = csv.DictReader(f)
|
41 |
for row in reader:
|
42 |
+
if row.get("evo_was_correct", "no").strip().lower() == "yes":
|
43 |
data.append([
|
44 |
row["question"],
|
45 |
row["option1"],
|
46 |
row["option2"],
|
47 |
row["context"],
|
48 |
+
row["evo_output"].strip()
|
|
|
49 |
])
|
50 |
return data
|
51 |
|
52 |
def build_model(config):
|
53 |
from model import EvoEncoder
|
54 |
+
class EvoClassifier(nn.Module):
|
55 |
def __init__(self):
|
56 |
super().__init__()
|
57 |
self.encoder = EvoEncoder(
|
|
|
62 |
memory_enabled=config["memory_enabled"]
|
63 |
)
|
64 |
self.pool = nn.AdaptiveAvgPool1d(1)
|
65 |
+
self.classifier = nn.Linear(512, 2) # two-class classification
|
66 |
|
67 |
def forward(self, input_ids):
|
68 |
x = self.encoder(input_ids)
|
69 |
x = self.pool(x.transpose(1, 2)).squeeze(-1)
|
70 |
return self.classifier(x)
|
71 |
|
72 |
+
return EvoClassifier().to(device)
|
73 |
|
74 |
def train_evo():
|
75 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
|
|
86 |
dataset = FeedbackDataset(tokenizer, data)
|
87 |
loader = DataLoader(dataset, batch_size=4, shuffle=True)
|
88 |
|
89 |
+
loss_fn = nn.CrossEntropyLoss()
|
90 |
optimizer = optim.Adam(model.parameters(), lr=1e-4)
|
91 |
|
92 |
for epoch in range(3):
|
93 |
total_loss, correct = 0, 0
|
94 |
for input_ids, labels in loader:
|
95 |
+
input_ids, labels = input_ids.to(device), labels.to(device)
|
96 |
+
logits = model(input_ids)
|
97 |
loss = loss_fn(logits, labels)
|
98 |
optimizer.zero_grad()
|
99 |
loss.backward()
|
100 |
optimizer.step()
|
101 |
|
102 |
total_loss += loss.item()
|
103 |
+
preds = torch.argmax(logits, dim=1)
|
104 |
+
correct += (preds == labels).sum().item()
|
105 |
|
106 |
acc = correct / len(dataset)
|
107 |
print(f"✅ Epoch {epoch+1} | Loss={total_loss:.4f} | Acc={acc:.4f}")
|
108 |
|
|
|
109 |
os.makedirs("trained_model", exist_ok=True)
|
110 |
torch.save(model.state_dict(), "trained_model/evo_retrained.pt")
|
111 |
log_genome(new_config, acc)
|