Spaces:
Sleeping
Sleeping
Update evo_model.py
Browse files- evo_model.py +19 -9
evo_model.py
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
-
import torch.nn.functional as F
|
4 |
|
5 |
-
class
|
6 |
def __init__(self, d_model=384, num_heads=6, ffn_dim=1024, num_layers=6, memory_enabled=False):
|
7 |
super().__init__()
|
8 |
self.embedding = nn.Embedding(30522, d_model)
|
@@ -17,12 +16,6 @@ class EvoTransformerV22(nn.Module):
|
|
17 |
if memory_enabled:
|
18 |
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
|
19 |
self.memory_proj = nn.Linear(d_model, d_model)
|
20 |
-
self.pooling = nn.AdaptiveAvgPool1d(1)
|
21 |
-
self.classifier = nn.Sequential(
|
22 |
-
nn.Linear(d_model, 128),
|
23 |
-
nn.ReLU(),
|
24 |
-
nn.Linear(128, 2)
|
25 |
-
)
|
26 |
|
27 |
def forward(self, input_ids):
|
28 |
x = self.embedding(input_ids)
|
@@ -30,6 +23,23 @@ class EvoTransformerV22(nn.Module):
|
|
30 |
mem = self.memory_token.expand(x.size(0), -1, -1)
|
31 |
x = torch.cat([mem, x], dim=1)
|
32 |
x = self.transformer(x)
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
x = self.pooling(x).squeeze(-1)
|
35 |
return self.classifier(x)
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
|
|
3 |
|
4 |
+
class EvoEncoder(nn.Module):
|
5 |
def __init__(self, d_model=384, num_heads=6, ffn_dim=1024, num_layers=6, memory_enabled=False):
|
6 |
super().__init__()
|
7 |
self.embedding = nn.Embedding(30522, d_model)
|
|
|
16 |
if memory_enabled:
|
17 |
self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model))
|
18 |
self.memory_proj = nn.Linear(d_model, d_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def forward(self, input_ids):
|
21 |
x = self.embedding(input_ids)
|
|
|
23 |
mem = self.memory_token.expand(x.size(0), -1, -1)
|
24 |
x = torch.cat([mem, x], dim=1)
|
25 |
x = self.transformer(x)
|
26 |
+
return x
|
27 |
+
|
28 |
+
class EvoTransformerV22(nn.Module):
|
29 |
+
def __init__(self):
|
30 |
+
super().__init__()
|
31 |
+
self.encoder = EvoEncoder(
|
32 |
+
d_model=384,
|
33 |
+
num_heads=6,
|
34 |
+
ffn_dim=1024,
|
35 |
+
num_layers=6,
|
36 |
+
memory_enabled=True
|
37 |
+
)
|
38 |
+
self.pooling = nn.AdaptiveAvgPool1d(1)
|
39 |
+
self.classifier = nn.Linear(384, 2)
|
40 |
+
|
41 |
+
def forward(self, input_ids):
|
42 |
+
x = self.encoder(input_ids)
|
43 |
+
x = x.permute(0, 2, 1) # [B, D, T]
|
44 |
x = self.pooling(x).squeeze(-1)
|
45 |
return self.classifier(x)
|