HemanM's picture
Update app.py
118680e verified
raw
history blame
1.6 kB
import gradio as gr
from evo_transformer import EvoTransformer
# Initialize global EvoTransformer object
evo = EvoTransformer()
# Define Gradio functions
def evolve_and_display(generations):
evo.evolve(generations)
latest_config = evo.config
history = evo.get_history()
evaluation = evo.evaluate()
history_table = "\n".join(
[f"Gen {i}: {cfg}" for i, cfg in enumerate(history[-generations:])]
)
return (
f"### Final Evolved Configuration\n"
f"**Layers**: {latest_config['layers']} \n"
f"**Attention Heads**: {latest_config['attention_heads']} \n"
f"**FFN Dimension**: {latest_config['ffn_dim']} \n"
f"**Dropout**: {latest_config['dropout']} \n"
f"**Memory**: {latest_config['memory']} \n\n"
f"### Evaluation\n"
f"**Simulated Accuracy**: {evaluation['accuracy']} \n"
f"**Estimated Parameters**: {evaluation['params']}M \n\n"
f"### Trait History (last {generations} generations)\n"
f"```\n{history_table}\n```"
)
# Build Gradio Interface
with gr.Blocks(title="EvoTransformer Demo") as demo:
gr.Markdown("# 🧬 EvoTransformer")
gr.Markdown("Simulate in-training architectural evolution of a Transformer model.")
with gr.Row():
generations_slider = gr.Slider(1, 10, value=3, label="Generations to Evolve")
evolve_btn = gr.Button("Evolve")
output_box = gr.Markdown()
evolve_btn.click(
evolve_and_display,
inputs=[generations_slider],
outputs=[output_box],
)
# Launch the app
demo.launch()