Spaces:
Sleeping
Sleeping
# evo_transformer.py | |
import random | |
import json | |
class EvoTransformer: | |
def __init__(self, config=None): | |
self.config = config or { | |
"layers": 4, | |
"attention_heads": 4, | |
"ffn_dim": 1024, | |
"dropout": 0.1, | |
"memory": False, | |
} | |
self.history = [self.config.copy()] | |
def mutate(self): | |
new_config = self.config.copy() | |
trait = random.choice(list(new_config.keys())) | |
if trait == "layers": | |
new_config[trait] = max(1, new_config[trait] + random.choice([-1, 1])) | |
elif trait == "attention_heads": | |
new_config[trait] = random.choice([2, 4, 6, 8]) | |
elif trait == "ffn_dim": | |
new_config[trait] = random.choice([512, 1024, 2048]) | |
elif trait == "dropout": | |
change = round(random.uniform(-0.05, 0.05), 2) | |
new_config[trait] = round(min(max(0.0, new_config[trait] + change), 0.5), 2) | |
elif trait == "memory": | |
new_config[trait] = not new_config[trait] | |
self.config = new_config | |
self.history.append(new_config.copy()) | |
def evolve(self, generations=3): | |
for _ in range(generations): | |
self.mutate() | |
def get_history(self): | |
return self.history | |
def evaluate(self): | |
# Simulated accuracy and parameter count | |
accuracy = round(0.8 + random.uniform(0.01, 0.15), 4) | |
return { | |
"accuracy": accuracy, | |
"params": self.estimate_params() | |
} | |
def estimate_params(self): | |
# Lightweight param estimate formula (not real count) | |
multiplier = 1.0 + (0.5 if self.config["memory"] else 0.0) | |
return int(self.config["layers"] * self.config["ffn_dim"] * multiplier) | |
def export_csv(self): | |
import pandas as pd | |
df = pd.DataFrame(self.history) | |
return df.to_csv(index=False) | |
def export_json(self): | |
return json.dumps(self.history, indent=2) | |