Spaces:
Sleeping
Sleeping
Update evo_transformer.py
Browse files- evo_transformer.py +13 -15
evo_transformer.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
# evo_transformer.py
|
2 |
import random
|
|
|
3 |
import json
|
4 |
|
5 |
class EvoTransformer:
|
@@ -16,7 +17,7 @@ class EvoTransformer:
|
|
16 |
def mutate(self):
|
17 |
new_config = self.config.copy()
|
18 |
trait = random.choice(list(new_config.keys()))
|
19 |
-
|
20 |
if trait == "layers":
|
21 |
new_config[trait] = max(1, new_config[trait] + random.choice([-1, 1]))
|
22 |
elif trait == "attention_heads":
|
@@ -31,27 +32,24 @@ class EvoTransformer:
|
|
31 |
self.config = new_config
|
32 |
self.history.append(new_config.copy())
|
33 |
|
34 |
-
def evolve(self, generations=
|
35 |
for _ in range(generations):
|
36 |
self.mutate()
|
37 |
|
38 |
-
def get_history(self):
|
39 |
-
return self.history
|
40 |
-
|
41 |
def evaluate(self):
|
42 |
-
|
43 |
-
|
|
|
|
|
44 |
|
45 |
def estimate_params(self):
|
46 |
return round(10 + self.config["layers"] * self.config["ffn_dim"] * 0.001, 2)
|
47 |
|
48 |
-
def
|
49 |
-
|
50 |
-
lines = [",".join(headers)]
|
51 |
-
for config in self.history:
|
52 |
-
line = ",".join([str(config[h]) for h in headers])
|
53 |
-
lines.append(line)
|
54 |
-
return "\n".join(lines)
|
55 |
|
56 |
-
def
|
57 |
return json.dumps(self.history, indent=2)
|
|
|
|
|
|
|
|
1 |
# evo_transformer.py
|
2 |
import random
|
3 |
+
import pandas as pd
|
4 |
import json
|
5 |
|
6 |
class EvoTransformer:
|
|
|
17 |
def mutate(self):
|
18 |
new_config = self.config.copy()
|
19 |
trait = random.choice(list(new_config.keys()))
|
20 |
+
|
21 |
if trait == "layers":
|
22 |
new_config[trait] = max(1, new_config[trait] + random.choice([-1, 1]))
|
23 |
elif trait == "attention_heads":
|
|
|
32 |
self.config = new_config
|
33 |
self.history.append(new_config.copy())
|
34 |
|
35 |
+
def evolve(self, generations=5):
|
36 |
for _ in range(generations):
|
37 |
self.mutate()
|
38 |
|
|
|
|
|
|
|
39 |
def evaluate(self):
|
40 |
+
# Simulated accuracy and parameter estimate
|
41 |
+
accuracy = round(random.uniform(0.85, 0.95), 4)
|
42 |
+
params = self.estimate_params()
|
43 |
+
return accuracy, params
|
44 |
|
45 |
def estimate_params(self):
|
46 |
return round(10 + self.config["layers"] * self.config["ffn_dim"] * 0.001, 2)
|
47 |
|
48 |
+
def get_history_df(self):
|
49 |
+
return pd.DataFrame(self.history)
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
def get_history_json(self):
|
52 |
return json.dumps(self.history, indent=2)
|
53 |
+
|
54 |
+
def get_final_config(self):
|
55 |
+
return self.config
|