Spaces:
Sleeping
Sleeping
Update evo_transformer.py
Browse files- evo_transformer.py +14 -32
evo_transformer.py
CHANGED
@@ -1,5 +1,6 @@
|
|
|
|
1 |
import random
|
2 |
-
import
|
3 |
|
4 |
class EvoTransformer:
|
5 |
def __init__(self, config=None):
|
@@ -15,7 +16,7 @@ class EvoTransformer:
|
|
15 |
def mutate(self):
|
16 |
new_config = self.config.copy()
|
17 |
trait = random.choice(list(new_config.keys()))
|
18 |
-
|
19 |
if trait == "layers":
|
20 |
new_config[trait] = max(1, new_config[trait] + random.choice([-1, 1]))
|
21 |
elif trait == "attention_heads":
|
@@ -30,7 +31,7 @@ class EvoTransformer:
|
|
30 |
self.config = new_config
|
31 |
self.history.append(new_config.copy())
|
32 |
|
33 |
-
def evolve(self, generations=
|
34 |
for _ in range(generations):
|
35 |
self.mutate()
|
36 |
|
@@ -38,38 +39,19 @@ class EvoTransformer:
|
|
38 |
return self.history
|
39 |
|
40 |
def evaluate(self):
|
41 |
-
# Simulated accuracy for demo
|
42 |
score = round(random.uniform(0.85, 0.95), 4)
|
43 |
-
return {
|
44 |
-
"accuracy": score,
|
45 |
-
"params": self.estimate_params()
|
46 |
-
}
|
47 |
|
48 |
def estimate_params(self):
|
49 |
return round(10 + self.config["layers"] * self.config["ffn_dim"] * 0.001, 2)
|
50 |
|
51 |
-
def
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
plt.plot(heads, label="Attention Heads", marker='s', color='blue')
|
59 |
-
plt.plot(ffn_dims, label="FFN Dim", marker='^', color='green')
|
60 |
-
plt.xlabel("Generation")
|
61 |
-
plt.ylabel("Value")
|
62 |
-
plt.title("Evolution of Traits")
|
63 |
-
plt.legend()
|
64 |
-
plt.grid(True)
|
65 |
-
plt.tight_layout()
|
66 |
-
plt.show()
|
67 |
-
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
evo = EvoTransformer()
|
72 |
-
evo.evolve(generations=8)
|
73 |
-
evo.plot_evolution()
|
74 |
-
print("Final Config:", evo.config)
|
75 |
-
print("Evaluation:", evo.evaluate())
|
|
|
1 |
+
# evo_transformer.py
|
2 |
import random
|
3 |
+
import json
|
4 |
|
5 |
class EvoTransformer:
|
6 |
def __init__(self, config=None):
|
|
|
16 |
def mutate(self):
|
17 |
new_config = self.config.copy()
|
18 |
trait = random.choice(list(new_config.keys()))
|
19 |
+
|
20 |
if trait == "layers":
|
21 |
new_config[trait] = max(1, new_config[trait] + random.choice([-1, 1]))
|
22 |
elif trait == "attention_heads":
|
|
|
31 |
self.config = new_config
|
32 |
self.history.append(new_config.copy())
|
33 |
|
34 |
+
def evolve(self, generations=3):
|
35 |
for _ in range(generations):
|
36 |
self.mutate()
|
37 |
|
|
|
39 |
return self.history
|
40 |
|
41 |
def evaluate(self):
|
|
|
42 |
score = round(random.uniform(0.85, 0.95), 4)
|
43 |
+
return {"accuracy": score, "params": self.estimate_params()}
|
|
|
|
|
|
|
44 |
|
45 |
def estimate_params(self):
|
46 |
return round(10 + self.config["layers"] * self.config["ffn_dim"] * 0.001, 2)
|
47 |
|
48 |
+
def export_csv(self):
|
49 |
+
headers = list(self.history[0].keys())
|
50 |
+
lines = [",".join(headers)]
|
51 |
+
for config in self.history:
|
52 |
+
line = ",".join([str(config[h]) for h in headers])
|
53 |
+
lines.append(line)
|
54 |
+
return "\n".join(lines)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
def export_json(self):
|
57 |
+
return json.dumps(self.history, indent=2)
|
|
|
|
|
|
|
|
|
|