HemanM commited on
Commit
9dce9f3
·
verified ·
1 Parent(s): 8fb86cb

Update evo_transformer.py

Browse files
Files changed (1) hide show
  1. evo_transformer.py +48 -0
evo_transformer.py CHANGED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # evo_transformer.py
2
+ import random
3
+
4
+ class EvoTransformer:
5
+ def __init__(self, config=None):
6
+ # Initialize with default or passed config
7
+ self.config = config or {
8
+ "layers": 4,
9
+ "attention_heads": 4,
10
+ "ffn_dim": 1024,
11
+ "dropout": 0.1,
12
+ "memory": False,
13
+ }
14
+ self.history = [self.config.copy()]
15
+
16
+ def mutate(self):
17
+ new_config = self.config.copy()
18
+ trait = random.choice(list(new_config.keys()))
19
+
20
+ if trait == "layers":
21
+ new_config[trait] = max(1, new_config[trait] + random.choice([-1, 1]))
22
+ elif trait == "attention_heads":
23
+ new_config[trait] = random.choice([2, 4, 6, 8])
24
+ elif trait == "ffn_dim":
25
+ new_config[trait] = random.choice([512, 1024, 2048])
26
+ elif trait == "dropout":
27
+ new_config[trait] = round(min(max(0.0, new_config[trait] + random.uniform(-0.05, 0.05)), 0.5), 2)
28
+ elif trait == "memory":
29
+ new_config[trait] = not new_config[trait]
30
+
31
+ self.config = new_config
32
+ self.history.append(new_config.copy())
33
+
34
+ def evolve(self, generations=3):
35
+ for _ in range(generations):
36
+ self.mutate()
37
+
38
+ def get_history(self):
39
+ return self.history
40
+
41
+ def evaluate(self):
42
+ # Simulate an accuracy score for demo purposes
43
+ score = round(random.uniform(0.85, 0.95), 4)
44
+ return {"accuracy": score, "params": self.estimate_params()}
45
+
46
+ def estimate_params(self):
47
+ # Simulated parameter count based on config
48
+ return 10 + self.config["layers"] * self.config["ffn_dim"] * 0.001