Spaces:
Running
Running
File size: 7,055 Bytes
b3137d4 312dbba e3d2f2e 312dbba e3d2f2e 312dbba 08db431 312dbba e3d2f2e 727fafd 312dbba e3d2f2e 312dbba e3d2f2e 312dbba e3d2f2e 312dbba e3d2f2e 312dbba e3d2f2e 312dbba e3d2f2e 312dbba 63d9bd3 312dbba e3d2f2e 312dbba e3d2f2e 312dbba e3d2f2e 312dbba e3d2f2e 312dbba e3d2f2e 312dbba e3d2f2e 312dbba e3d2f2e 312dbba e3d2f2e 312dbba e3d2f2e 312dbba e3d2f2e 312dbba e3d2f2e 312dbba 63d9bd3 312dbba 63d9bd3 312dbba 63d9bd3 e3d2f2e 312dbba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, Dataset
from transformers import AutoTokenizer, get_scheduler
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import io
from PIL import Image
import openai
import time
# β
Set OpenAI API key from secret
openai.api_key = os.getenv("OPENAI_API_KEY")
# β
Device setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# β
Load PIQA from public GitHub (JSONL)
dataset = {
"train": pd.read_json("https://raw.githubusercontent.com/epfml/Deep_Learning_Projects/master/PIQA/data/train.jsonl", lines=True),
"validation": pd.read_json("https://raw.githubusercontent.com/epfml/Deep_Learning_Projects/master/PIQA/data/valid.jsonl", lines=True)
}
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# β
Tokenization helper
def tokenize_choices(example):
input_0 = tokenizer(example["goal"] + " " + example["sol1"], truncation=True, padding="max_length", max_length=128, return_tensors="pt")
input_1 = tokenizer(example["goal"] + " " + example["sol2"], truncation=True, padding="max_length", max_length=128, return_tensors="pt")
return {
"input_ids_0": input_0["input_ids"][0],
"input_ids_1": input_1["input_ids"][0],
"label": int(example["label"])
}
train_data = [tokenize_choices(row) for _, row in dataset["train"].head(500).iterrows()]
val_data = [tokenize_choices(row) for _, row in dataset["validation"].head(200).iterrows()]
# β
Dataset class
class PIQADataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return {
"input_ids_0": self.data[idx]["input_ids_0"],
"input_ids_1": self.data[idx]["input_ids_1"],
"label": torch.tensor(self.data[idx]["label"])
}
train_dataset = PIQADataset(train_data)
val_dataset = PIQADataset(val_data)
# β
EvoTransformer definition
class EvoTransformer(nn.Module):
def __init__(self):
super().__init__()
self.embedding = nn.Embedding(30522, 384)
encoder_layer = nn.TransformerEncoderLayer(d_model=384, nhead=6, dim_feedforward=1024, batch_first=True)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
self.classifier = nn.Sequential(
nn.Linear(384, 128),
nn.ReLU(),
nn.Linear(128, 1)
)
def forward(self, input_ids):
x = self.embedding(input_ids)
x = self.encoder(x)
return self.classifier(x[:, 0, :]).squeeze(-1)
# β
GPT-3.5 logic
def gpt35_answer(prompt):
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
max_tokens=20,
temperature=0
)
return response['choices'][0]['message']['content'].strip()
except Exception as e:
return f"[Error: {e}]"
# β
Main train + compare function
def train_and_demo(few_shot_size):
start_time = time.time()
model = EvoTransformer().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.AdamW(model.parameters(), lr=5e-5)
loader = DataLoader(train_dataset[:few_shot_size], batch_size=8, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32)
scheduler = get_scheduler("linear", optimizer=optimizer, num_warmup_steps=0, num_training_steps=3 * len(loader))
best_val = 0
accs = []
patience = 2
early_stop = 0
for epoch in range(3):
model.train()
for batch in loader:
optimizer.zero_grad()
x0 = batch["input_ids_0"].to(device)
x1 = batch["input_ids_1"].to(device)
labels = batch["label"].to(device)
l0 = model(x0)
l1 = model(x1)
logits = torch.stack([l0, l1], dim=1)
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
scheduler.step()
model.eval()
correct = 0
with torch.no_grad():
for batch in val_loader:
x0 = batch["input_ids_0"].to(device)
x1 = batch["input_ids_1"].to(device)
labels = batch["label"].to(device)
l0 = model(x0)
l1 = model(x1)
logits = torch.stack([l0, l1], dim=1)
preds = torch.argmax(logits, dim=1)
correct += (preds == labels).sum().item()
acc = correct / len(val_dataset)
accs.append(acc)
if acc > best_val:
best_val = acc
early_stop = 0
else:
early_stop += 1
if early_stop >= patience:
break
# β
Accuracy plot
fig, ax = plt.subplots()
ax.plot(accs, marker='o')
ax.set_title(f"Validation Accuracy ({few_shot_size} examples)")
ax.set_xlabel("Epoch")
ax.set_ylabel("Accuracy")
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img = Image.open(buf)
# β
Example comparison with GPT-3.5
output = ""
for i in range(2):
ex = dataset["validation"].iloc[i]
goal = ex["goal"]
sol1 = ex["sol1"]
sol2 = ex["sol2"]
x0 = tokenizer(goal + " " + sol1, return_tensors="pt", padding="max_length", max_length=128, truncation=True)["input_ids"].to(device)
x1 = tokenizer(goal + " " + sol2, return_tensors="pt", padding="max_length", max_length=128, truncation=True)["input_ids"].to(device)
l0 = model(x0)
l1 = model(x1)
pred_evo = 0 if l0 > l1 else 1
correct_evo = "β
" if pred_evo == ex["label"] else "β"
gpt_prompt = f"Q: {goal}\nA) {sol1}\nB) {sol2}\nWhich is more appropriate? Answer with A or B only."
gpt_out = gpt35_answer(gpt_prompt)
pred_gpt = gpt_out[0].upper()
correct_gpt = "β
" if (pred_gpt == 'A' and ex["label"] == 0) or (pred_gpt == 'B' and ex["label"] == 1) else "β"
output += f"Q: {goal}\nA) {sol1}\nB) {sol2}\n\nEvoTransformer: {'A' if pred_evo==0 else 'B'} {correct_evo}\nGPT-3.5: {pred_gpt} {correct_gpt}\n\n"
architecture_info = f"""
EvoTransformer v2.1 Configuration:
- Embedding Dim: 384
- Transformer Layers: 6
- Attention Heads: 6
- Feedforward Size: 1024
- Parameters: ~13M
- Training Time: {time.time() - start_time:.2f}s
"""
return img, f"Best Accuracy: {best_val:.4f}", output.strip() + "\n\n" + architecture_info.strip()
# β
Gradio app
gr.Interface(
fn=train_and_demo,
inputs=gr.Slider(10, 300, step=10, value=50, label="Training Samples"),
outputs=[
gr.Image(label="Accuracy Plot"),
gr.Textbox(label="Best Accuracy"),
gr.Textbox(label="Evo vs GPT-3.5 Output")
],
title="𧬠EvoTransformer v2.1 Benchmark",
description="Train EvoTransformer on PIQA and compare predictions against GPT-3.5."
).launch()
|