File size: 1,150 Bytes
a040341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
# ✅ model.py
import torch
import torch.nn as nn

class EvoTransformerBlock(nn.Module):
    def __init__(self, d_model, nhead, dim_feedforward):
        super().__init__()
        self.layer = nn.TransformerEncoderLayer(
            d_model=d_model,
            nhead=nhead,
            dim_feedforward=dim_feedforward,
            batch_first=True
        )

    def forward(self, x):
        return self.layer(x)

class EvoTransformer(nn.Module):
    def __init__(self, vocab_size, d_model=256, nhead=4, dim_feedforward=512, num_layers=4):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, d_model)
        self.encoder = nn.Sequential(*[
            EvoTransformerBlock(d_model, nhead, dim_feedforward) for _ in range(num_layers)
        ])
        self.pooler = nn.AdaptiveAvgPool1d(1)
        self.classifier = nn.Sequential(
            nn.Linear(d_model, d_model // 2),
            nn.ReLU(),
            nn.Linear(d_model // 2, 2)
        )

    def forward(self, x):
        x = self.embedding(x)
        x = self.encoder(x)
        x = self.pooler(x.transpose(1, 2)).squeeze(-1)
        return self.classifier(x)