Spaces:
Running
Running
File size: 6,178 Bytes
b3137d4 312dbba 08db431 312dbba 63d9bd3 727fafd 312dbba 62adefb 312dbba 62adefb 312dbba 63d9bd3 312dbba 63d9bd3 312dbba 62adefb 312dbba 62adefb 312dbba 62adefb 312dbba 62adefb 312dbba 63d9bd3 312dbba 63d9bd3 312dbba 63d9bd3 312dbba 63d9bd3 62adefb 312dbba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from datasets import load_dataset
from transformers import AutoTokenizer, get_scheduler
import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
import io
from PIL import Image
import openai
import time
# β
Secure OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")
# β
Use GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# β
Load official PIQA dataset with remote code trust enabled
dataset = load_dataset("piqa", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def tokenize_choices(example):
input_0 = tokenizer(example["goal"] + " " + example["sol1"], truncation=True, padding="max_length", max_length=128)
input_1 = tokenizer(example["goal"] + " " + example["sol2"], truncation=True, padding="max_length", max_length=128)
return {
"input_ids_0": input_0["input_ids"],
"input_ids_1": input_1["input_ids"],
"label": example["label"]
}
dataset = dataset.map(tokenize_choices)
val_dataset = dataset["validation"].select(range(200)).with_format("torch")
# β
EvoTransformer definition
class EvoTransformer(nn.Module):
def __init__(self):
super().__init__()
self.embedding = nn.Embedding(30522, 384)
encoder_layer = nn.TransformerEncoderLayer(d_model=384, nhead=6, dim_feedforward=1024, batch_first=True)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers=6)
self.classifier = nn.Sequential(
nn.Linear(384, 128),
nn.ReLU(),
nn.Linear(128, 1)
)
def forward(self, input_ids):
x = self.embedding(input_ids)
x = self.encoder(x)
return self.classifier(x[:, 0, :]).squeeze(-1)
# β
GPT-3.5 response
def gpt35_answer(prompt):
try:
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
max_tokens=20,
temperature=0
)
return response['choices'][0]['message']['content'].strip()
except Exception as e:
return f"[Error: {e}]"
# β
Training and evaluation function
def train_and_demo(few_shot_size):
start_time = time.time()
model = EvoTransformer().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.AdamW(model.parameters(), lr=5e-5)
train_set = dataset["train"].select(range(few_shot_size)).with_format("torch")
train_loader = DataLoader(train_set, batch_size=8, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=32)
scheduler = get_scheduler("linear", optimizer=optimizer,
num_warmup_steps=0, num_training_steps=3 * len(train_loader))
best_val = 0
accs = []
patience = 2
early_stop = 0
for epoch in range(3):
model.train()
for batch in train_loader:
optimizer.zero_grad()
x0 = batch["input_ids_0"].to(device)
x1 = batch["input_ids_1"].to(device)
labels = batch["label"].to(device)
l0 = model(x0)
l1 = model(x1)
logits = torch.stack([l0, l1], dim=1)
loss = criterion(logits, labels)
loss.backward()
optimizer.step()
scheduler.step()
model.eval()
correct = 0
with torch.no_grad():
for batch in val_loader:
x0 = batch["input_ids_0"].to(device)
x1 = batch["input_ids_1"].to(device)
labels = batch["label"].to(device)
l0 = model(x0)
l1 = model(x1)
logits = torch.stack([l0, l1], dim=1)
preds = torch.argmax(logits, dim=1)
correct += (preds == labels).sum().item()
acc = correct / len(val_dataset)
accs.append(acc)
if acc > best_val:
best_val = acc
early_stop = 0
else:
early_stop += 1
if early_stop >= patience:
break
# β
Accuracy Plot
fig, ax = plt.subplots()
ax.plot(accs, marker='o')
ax.set_title(f"Validation Accuracy ({few_shot_size} examples)")
ax.set_xlabel("Epoch")
ax.set_ylabel("Accuracy")
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
img = Image.open(buf)
# β
GPT vs Evo Predictions
output = ""
for i in range(2):
ex = dataset["validation"][i]
goal = ex["goal"]
sol1 = ex["sol1"]
sol2 = ex["sol2"]
x0 = torch.tensor([ex["input_ids_0"]]).to(device)
x1 = torch.tensor([ex["input_ids_1"]]).to(device)
l0 = model(x0)
l1 = model(x1)
pred_evo = 0 if l0 > l1 else 1
correct_evo = "β
" if pred_evo == ex["label"] else "β"
gpt_prompt = f"Q: {goal}\nA) {sol1}\nB) {sol2}\nWhich is more appropriate? Answer with A or B only."
gpt_out = gpt35_answer(gpt_prompt)
pred_gpt = gpt_out[0].upper()
correct_gpt = "β
" if (pred_gpt == 'A' and ex["label"] == 0) or (pred_gpt == 'B' and ex["label"] == 1) else "β"
output += f"Q: {goal}\nA) {sol1}\nB) {sol2}\n\nEvoTransformer: {'A' if pred_evo==0 else 'B'} {correct_evo}\nGPT-3.5: {pred_gpt} {correct_gpt}\n\n"
architecture_info = f"""
EvoTransformer v2.1 Configuration:
- Embedding Dim: 384
- Transformer Layers: 6
- Attention Heads: 6
- Feedforward Size: 1024
- Parameters: ~13M
- Training Time: {time.time() - start_time:.2f}s
"""
return img, f"Best Accuracy: {best_val:.4f}", output.strip() + "\n\n" + architecture_info.strip()
# β
Gradio interface
gr.Interface(
fn=train_and_demo,
inputs=gr.Slider(10, 500, step=10, value=50, label="Number of Training Examples"),
outputs=[
gr.Image(label="Accuracy Plot"),
gr.Textbox(label="Best Accuracy"),
gr.Textbox(label="Evo vs GPT-3.5 Output")
],
title="𧬠EvoTransformer v2.1 Benchmark",
description="Train EvoTransformer live on PIQA and compare with GPT-3.5."
).launch()
|