File size: 2,507 Bytes
c605926
 
6e70824
c605926
 
92432bf
 
c605926
 
 
 
 
 
 
 
 
 
 
 
 
 
92432bf
 
 
 
c605926
92432bf
 
 
 
 
 
 
 
c605926
92432bf
 
 
c605926
92432bf
 
 
 
c605926
92432bf
 
 
 
 
 
 
 
 
c605926
92432bf
 
c605926
92432bf
 
 
 
 
 
 
c605926
92432bf
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from evo_model import EvoTransformerForClassification
from transformers import AutoTokenizer
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from firebase_admin import firestore

class EvoDataset(Dataset):
    def __init__(self, texts, labels, tokenizer, max_length=64):
        self.encodings = tokenizer(texts, truncation=True, padding=True, max_length=max_length)
        self.labels = labels

    def __getitem__(self, idx):
        input_ids = torch.tensor(self.encodings["input_ids"][idx])
        label = torch.tensor(self.labels[idx])
        return input_ids, label

    def __len__(self):
        return len(self.labels)

def manual_retrain():
    try:
        db = firestore.client()
        docs = db.collection("evo_feedback_logs").stream()

        goals, solution1, solution2, labels = [], [], [], []
        for doc in docs:
            d = doc.to_dict()
            if all(k in d for k in ["goal", "solution_1", "solution_2", "correct_answer"]):
                goals.append(d["goal"])
                solution1.append(d["solution_1"])
                solution2.append(d["solution_2"])
                labels.append(0 if d["correct_answer"] == "Solution 1" else 1)

        if not goals:
            print("[Retrain Error] No training data found.")
            return False

        tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
        texts = [f"{g} [SEP] {s1} [SEP] {s2}" for g, s1, s2 in zip(goals, solution1, solution2)]
        dataset = EvoDataset(texts, labels, tokenizer)
        loader = DataLoader(dataset, batch_size=4, shuffle=True)

        config = {
            "vocab_size": tokenizer.vocab_size,
            "d_model": 256,
            "nhead": 4,
            "dim_feedforward": 512,
            "num_hidden_layers": 4
        }
        model = EvoTransformerForClassification.from_config_dict(config)
        model.train()

        optimizer = optim.AdamW(model.parameters(), lr=1e-4)
        criterion = nn.CrossEntropyLoss()

        for epoch in range(3):
            for input_ids, label in loader:
                logits = model(input_ids)
                loss = criterion(logits, label)
                loss.backward()
                optimizer.step()
                optimizer.zero_grad()

        model.save_pretrained("trained_evo")
        print("✅ Retraining complete.")
        return True
    except Exception as e:
        print(f"[Retrain Error] {e}")
        return False