File size: 2,285 Bytes
c605926
 
 
6e70824
c605926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f997552
c605926
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from firebase_admin import firestore
from evo_model import EvoTransformerForClassification
from transformers import AutoTokenizer
import torch
from torch.utils.data import Dataset, DataLoader
import torch.nn as nn
import torch.optim as optim

class EvoDataset(Dataset):
    def __init__(self, texts, labels, tokenizer, max_length=64):
        self.encodings = tokenizer(texts, truncation=True, padding=True, max_length=max_length)
        self.labels = labels

    def __getitem__(self, idx):
        input_ids = torch.tensor(self.encodings["input_ids"][idx])
        label = torch.tensor(self.labels[idx])
        return input_ids, label

    def __len__(self):
        return len(self.labels)

def train_evo_transformer():
    db = firestore.client()
    docs = db.collection("evo_feedback_logs").stream()

    goals, solution1, solution2, labels = [], [], [], []
    for doc in docs:
        d = doc.to_dict()
        if all(k in d for k in ["goal", "solution_1", "solution_2", "correct_answer"]):
            goals.append(d["goal"])
            solution1.append(d["solution_1"])
            solution2.append(d["solution_2"])
            labels.append(0 if d["correct_answer"] == "Solution 1" else 1)

    if not goals:
        print("[Retrain Error] No training data found.")
        return False

    tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
    texts = [f"{g} [SEP] {s1} [SEP] {s2}" for g, s1, s2 in zip(goals, solution1, solution2)]
    dataset = EvoDataset(texts, labels, tokenizer)
    loader = DataLoader(dataset, batch_size=4, shuffle=True)

    config = {
        "vocab_size": tokenizer.vocab_size,
        "d_model": 256,
        "nhead": 4,
        "dim_feedforward": 512,
        "num_hidden_layers": 4
    }
    model = EvoTransformerForClassification.from_config_dict(config)
    model.train()

    optimizer = optim.AdamW(model.parameters(), lr=1e-4)
    criterion = nn.CrossEntropyLoss()

    for epoch in range(3):  # quick training
        for input_ids, label in loader:
            logits = model(input_ids)
            loss = criterion(logits, label)
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()

    model.save_pretrained("trained_evo")
    print("✅ Retraining complete.")
    return True