Spaces:
Running
Running
import torch | |
from model import EvoTransformer | |
from transformers import AutoTokenizer | |
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") | |
model = EvoTransformer(vocab_size=tokenizer.vocab_size, d_model=256, nhead=4, dim_feedforward=512, num_layers=4) | |
model.load_state_dict(torch.load("trained_model.pt", map_location=torch.device("cpu"))) | |
model.eval() | |
def predict(goal, sol1, sol2): | |
text = goal + " " + sol1 + " " + sol2 | |
tokens = tokenizer(text, return_tensors="pt", truncation=True, padding="max_length", max_length=64) | |
with torch.no_grad(): | |
output = model(tokens["input_ids"]) | |
return "Solution 1" if output.argmax().item() == 0 else "Solution 2" | |