Spaces:
Running
Running
from evo_model import EvoTransformerForClassification | |
from transformers import AutoTokenizer | |
import torch | |
# Load model and tokenizer once | |
model = EvoTransformerForClassification.from_pretrained("trained_model") | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
model.eval() | |
def generate_response(goal, sol1, sol2): | |
prompt = f"Goal: {goal} Option 1: {sol1} Option 2: {sol2}" | |
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits if hasattr(outputs, "logits") else outputs[0] | |
prediction = torch.argmax(logits, dim=1).item() | |
return "Solution 1" if prediction == 0 else "Solution 2" | |