HemanM commited on
Commit
34f85d1
·
verified ·
1 Parent(s): b530936

Update init_model.py

Browse files
Files changed (1) hide show
  1. init_model.py +35 -10
init_model.py CHANGED
@@ -1,14 +1,39 @@
1
- import os
2
  import torch
3
- from evo_model import EvoTransformerConfig, EvoTransformerForClassification
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
- # Ensure folder
6
- os.makedirs("trained_model", exist_ok=True)
7
 
8
- # Create config and model
9
- config = EvoTransformerConfig()
10
- model = EvoTransformerForClassification(config)
 
 
 
11
 
12
- # Save config and model in Hugging Face format
13
- model.save_pretrained("trained_model")
14
- print("✅ EvoTransformer initial model + config saved to 'trained_model/'")
 
 
1
  import torch
2
+ from evo_model import EvoTransformerForClassification, EvoTransformerConfig
3
+ from transformers import AutoTokenizer
4
+ from torch.utils.data import DataLoader, TensorDataset
5
+ import os
6
+
7
+ def retrain_model():
8
+ print("🔄 Starting Evo retrain...")
9
+
10
+ # Sample retraining data
11
+ examples = [
12
+ "Goal: House on fire. Option 1: Exit house. Option 2: Stay in house.",
13
+ "Goal: Wet floor. Option 1: Walk slowly. Option 2: Run fast.",
14
+ "Goal: Loud music. Option 1: Turn it down. Option 2: Ignore it."
15
+ ]
16
+ labels = [0, 0, 0] # Option 1 is correct
17
+
18
+ tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
19
+ model = EvoTransformerForClassification(EvoTransformerConfig())
20
+
21
+ inputs = tokenizer(examples, padding=True, truncation=True, return_tensors="pt")
22
+ labels_tensor = torch.tensor(labels)
23
+
24
+ dataset = TensorDataset(inputs["input_ids"], inputs["attention_mask"], labels_tensor)
25
+ dataloader = DataLoader(dataset, batch_size=2)
26
 
27
+ model.train()
28
+ optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
29
 
30
+ for epoch in range(2):
31
+ for input_ids, attention_mask, labels_batch in dataloader:
32
+ optimizer.zero_grad()
33
+ loss, _ = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels_batch)
34
+ loss.backward()
35
+ optimizer.step()
36
 
37
+ os.makedirs("trained_model", exist_ok=True)
38
+ model.save_pretrained("trained_model")
39
+ print("✅ Evo retrained and saved.")