Spaces:
Running
Running
Update watchdog.py
Browse files- watchdog.py +43 -41
watchdog.py
CHANGED
@@ -1,47 +1,44 @@
|
|
1 |
-
|
2 |
-
|
3 |
import torch
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
from firebase_admin import firestore
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
self.encodings = tokenizer(texts, truncation=True, padding=True, max_length=max_length)
|
12 |
-
self.labels = labels
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
|
19 |
-
|
20 |
-
return len(self.labels)
|
21 |
|
22 |
def manual_retrain():
|
23 |
try:
|
24 |
-
|
25 |
docs = db.collection("evo_feedback_logs").stream()
|
26 |
-
|
27 |
-
goals, solution1, solution2, labels = [], [], [], []
|
28 |
for doc in docs:
|
29 |
d = doc.to_dict()
|
30 |
if all(k in d for k in ["goal", "solution_1", "solution_2", "correct_answer"]):
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
labels.append(0 if d["correct_answer"] == "Solution 1" else 1)
|
35 |
|
36 |
-
if not
|
37 |
-
print("
|
38 |
return False
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
loader = DataLoader(dataset, batch_size=4, shuffle=True)
|
44 |
|
|
|
45 |
config = {
|
46 |
"vocab_size": tokenizer.vocab_size,
|
47 |
"d_model": 256,
|
@@ -49,23 +46,28 @@ def manual_retrain():
|
|
49 |
"dim_feedforward": 512,
|
50 |
"num_hidden_layers": 4
|
51 |
}
|
52 |
-
|
53 |
-
model
|
54 |
|
55 |
-
|
56 |
-
criterion = nn.CrossEntropyLoss()
|
|
|
57 |
|
|
|
|
|
58 |
for epoch in range(3):
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
model
|
67 |
-
|
|
|
68 |
return True
|
|
|
69 |
except Exception as e:
|
70 |
print(f"[Retrain Error] {e}")
|
71 |
return False
|
|
|
1 |
+
# watchdog.py
|
2 |
+
|
3 |
import torch
|
4 |
+
from evo_model import EvoTransformerForClassification, EvoTransformerConfig
|
5 |
+
from transformers import BertTokenizer
|
6 |
+
import firebase_admin
|
7 |
+
from firebase_admin import credentials, firestore
|
8 |
+
import os
|
9 |
+
from datetime import datetime
|
10 |
|
11 |
+
# β
Load tokenizer
|
12 |
+
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
|
|
|
|
13 |
|
14 |
+
# β
Init Firebase
|
15 |
+
if not firebase_admin._apps:
|
16 |
+
cred = credentials.Certificate("firebase_key.json")
|
17 |
+
firebase_admin.initialize_app(cred)
|
18 |
|
19 |
+
db = firestore.client()
|
|
|
20 |
|
21 |
def manual_retrain():
|
22 |
try:
|
23 |
+
# π Fetch feedback logs
|
24 |
docs = db.collection("evo_feedback_logs").stream()
|
25 |
+
data = []
|
|
|
26 |
for doc in docs:
|
27 |
d = doc.to_dict()
|
28 |
if all(k in d for k in ["goal", "solution_1", "solution_2", "correct_answer"]):
|
29 |
+
label = 0 if d["correct_answer"] == "Solution 1" else 1
|
30 |
+
combined = f"{d['goal']} [SEP] {d['solution_1']} [SEP] {d['solution_2']}"
|
31 |
+
data.append((combined, label))
|
|
|
32 |
|
33 |
+
if not data:
|
34 |
+
print("β No valid training data found.")
|
35 |
return False
|
36 |
|
37 |
+
# β
Tokenize
|
38 |
+
inputs = tokenizer([x[0] for x in data], padding=True, truncation=True, return_tensors="pt")
|
39 |
+
labels = torch.tensor([x[1] for x in data])
|
|
|
40 |
|
41 |
+
# β
Load config + model
|
42 |
config = {
|
43 |
"vocab_size": tokenizer.vocab_size,
|
44 |
"d_model": 256,
|
|
|
46 |
"dim_feedforward": 512,
|
47 |
"num_hidden_layers": 4
|
48 |
}
|
49 |
+
model_config = EvoTransformerConfig(**config)
|
50 |
+
model = EvoTransformerForClassification(model_config)
|
51 |
|
52 |
+
# β
Loss + optimizer
|
53 |
+
criterion = torch.nn.CrossEntropyLoss()
|
54 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
|
55 |
|
56 |
+
# β
Train (simple 3-epoch fine-tune)
|
57 |
+
model.train()
|
58 |
for epoch in range(3):
|
59 |
+
optimizer.zero_grad()
|
60 |
+
outputs = model(inputs["input_ids"])
|
61 |
+
loss = criterion(outputs, labels)
|
62 |
+
loss.backward()
|
63 |
+
optimizer.step()
|
64 |
+
print(f"[Epoch {epoch+1}] Loss: {loss.item():.4f}")
|
65 |
|
66 |
+
# β
Save model
|
67 |
+
torch.save(model.state_dict(), "trained_model.pt")
|
68 |
+
print("β
Evo updated via retrain from feedback!")
|
69 |
return True
|
70 |
+
|
71 |
except Exception as e:
|
72 |
print(f"[Retrain Error] {e}")
|
73 |
return False
|