Spaces:
Runtime error
Runtime error
Update watchdog.py
Browse files- watchdog.py +20 -11
watchdog.py
CHANGED
@@ -50,10 +50,10 @@ def fetch_training_data(tokenizer):
|
|
50 |
|
51 |
def get_architecture_summary(model):
|
52 |
summary = {
|
53 |
-
"Layers": getattr(model, "num_layers", "N/A"),
|
54 |
-
"Attention Heads": getattr(model, "num_heads", "N/A"),
|
55 |
-
"FFN Dim": getattr(model, "ffn_dim", "N/A"),
|
56 |
-
"Memory Enabled": getattr(model, "use_memory", "N/A"),
|
57 |
}
|
58 |
return "\n".join(f"{k}: {v}" for k, v in summary.items())
|
59 |
|
@@ -65,7 +65,16 @@ def retrain_model():
|
|
65 |
if input_ids is None or len(input_ids) < 2:
|
66 |
return "β οΈ Not enough data to retrain.", None, "Please log more feedback first."
|
67 |
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
model = EvoTransformerForClassification(config)
|
70 |
model.train()
|
71 |
|
@@ -80,10 +89,10 @@ def retrain_model():
|
|
80 |
optimizer.step()
|
81 |
print(f"Epoch {epoch+1}: Loss = {loss.item():.4f}")
|
82 |
|
83 |
-
# Simulate accuracy (
|
84 |
-
accuracy = 1.0
|
85 |
|
86 |
-
#
|
87 |
log_path = "trained_model/evolution_log.json"
|
88 |
os.makedirs("trained_model", exist_ok=True)
|
89 |
|
@@ -98,11 +107,11 @@ def retrain_model():
|
|
98 |
with open(log_path, "w") as f:
|
99 |
json.dump(history, f)
|
100 |
|
101 |
-
# Save
|
102 |
model.save_pretrained("trained_model")
|
103 |
print("β
EvoTransformer retrained and saved.")
|
104 |
|
105 |
-
# Reload
|
106 |
updated_model = load_model()
|
107 |
arch_text = get_architecture_summary(updated_model)
|
108 |
plot = evolution_accuracy_plot()
|
@@ -113,6 +122,6 @@ def retrain_model():
|
|
113 |
print(f"β Retraining failed: {e}")
|
114 |
return "β Error", None, f"Retrain failed: {e}"
|
115 |
|
116 |
-
#
|
117 |
if __name__ == "__main__":
|
118 |
retrain_model()
|
|
|
50 |
|
51 |
def get_architecture_summary(model):
|
52 |
summary = {
|
53 |
+
"Layers": getattr(model.config, "num_layers", "N/A"),
|
54 |
+
"Attention Heads": getattr(model.config, "num_heads", "N/A"),
|
55 |
+
"FFN Dim": getattr(model.config, "ffn_dim", "N/A"),
|
56 |
+
"Memory Enabled": getattr(model.config, "use_memory", "N/A"),
|
57 |
}
|
58 |
return "\n".join(f"{k}: {v}" for k, v in summary.items())
|
59 |
|
|
|
65 |
if input_ids is None or len(input_ids) < 2:
|
66 |
return "β οΈ Not enough data to retrain.", None, "Please log more feedback first."
|
67 |
|
68 |
+
# β
Explicitly define architecture details
|
69 |
+
config = EvoTransformerConfig(
|
70 |
+
hidden_size=384,
|
71 |
+
num_layers=6,
|
72 |
+
num_labels=2,
|
73 |
+
num_heads=6,
|
74 |
+
ffn_dim=1024,
|
75 |
+
use_memory=False
|
76 |
+
)
|
77 |
+
|
78 |
model = EvoTransformerForClassification(config)
|
79 |
model.train()
|
80 |
|
|
|
89 |
optimizer.step()
|
90 |
print(f"Epoch {epoch+1}: Loss = {loss.item():.4f}")
|
91 |
|
92 |
+
# Simulate accuracy (placeholder)
|
93 |
+
accuracy = 1.0
|
94 |
|
95 |
+
# Log evolution accuracy
|
96 |
log_path = "trained_model/evolution_log.json"
|
97 |
os.makedirs("trained_model", exist_ok=True)
|
98 |
|
|
|
107 |
with open(log_path, "w") as f:
|
108 |
json.dump(history, f)
|
109 |
|
110 |
+
# Save model
|
111 |
model.save_pretrained("trained_model")
|
112 |
print("β
EvoTransformer retrained and saved.")
|
113 |
|
114 |
+
# Reload and return dashboard updates
|
115 |
updated_model = load_model()
|
116 |
arch_text = get_architecture_summary(updated_model)
|
117 |
plot = evolution_accuracy_plot()
|
|
|
122 |
print(f"β Retraining failed: {e}")
|
123 |
return "β Error", None, f"Retrain failed: {e}"
|
124 |
|
125 |
+
# Allow direct script run
|
126 |
if __name__ == "__main__":
|
127 |
retrain_model()
|