Spaces:
Running
Running
Update watchdog.py
Browse files- watchdog.py +54 -59
watchdog.py
CHANGED
@@ -1,61 +1,56 @@
|
|
1 |
-
|
2 |
-
|
3 |
import torch
|
4 |
-
|
5 |
-
from
|
6 |
-
from
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
for doc in docs:
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
optimizer.step()
|
55 |
-
|
56 |
-
model.save_pretrained("trained_model")
|
57 |
-
print("✅ Evo retrained and saved.")
|
58 |
-
return True
|
59 |
-
except Exception as e:
|
60 |
-
print(f"[Retrain Error] {e}")
|
61 |
-
return False
|
|
|
1 |
+
import os
|
|
|
2 |
import torch
|
3 |
+
import firebase_admin
|
4 |
+
from firebase_admin import credentials, firestore
|
5 |
+
from model import SimpleEvoModel
|
6 |
+
|
7 |
+
# Initialize Firebase if not already initialized
|
8 |
+
if not firebase_admin._apps:
|
9 |
+
cred = credentials.Certificate("firebase_key.json")
|
10 |
+
firebase_admin.initialize_app(cred)
|
11 |
+
|
12 |
+
db = firestore.client()
|
13 |
+
|
14 |
+
def fetch_training_data():
|
15 |
+
logs_ref = db.collection("evo_feedback")
|
16 |
+
docs = logs_ref.stream()
|
17 |
+
|
18 |
+
inputs, labels = [], []
|
19 |
for doc in docs:
|
20 |
+
data = doc.to_dict()
|
21 |
+
goal = data.get("prompt", "")
|
22 |
+
winner = data.get("winner", "")
|
23 |
+
if winner:
|
24 |
+
# Simulated encoding
|
25 |
+
vector = [float(ord(c) % 256) / 255.0 for c in (goal + winner)]
|
26 |
+
vector = vector[:768] + [0.0] * max(0, 768 - len(vector)) # pad/truncate
|
27 |
+
label = 0 if "1" in winner else 1
|
28 |
+
inputs.append(vector)
|
29 |
+
labels.append(label)
|
30 |
+
|
31 |
+
return torch.tensor(inputs, dtype=torch.float32), torch.tensor(labels, dtype=torch.long)
|
32 |
+
|
33 |
+
def retrain_and_save():
|
34 |
+
X, y = fetch_training_data()
|
35 |
+
if len(X) < 2:
|
36 |
+
print("⚠️ Not enough training data.")
|
37 |
+
return
|
38 |
+
|
39 |
+
model = SimpleEvoModel()
|
40 |
+
loss_fn = torch.nn.CrossEntropyLoss()
|
41 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
|
42 |
+
|
43 |
+
for epoch in range(5):
|
44 |
+
optimizer.zero_grad()
|
45 |
+
output = model(X)
|
46 |
+
loss = loss_fn(output, y)
|
47 |
+
loss.backward()
|
48 |
+
optimizer.step()
|
49 |
+
|
50 |
+
# Save retrained model to trained_model/
|
51 |
+
os.makedirs("trained_model", exist_ok=True)
|
52 |
+
torch.save(model.state_dict(), "trained_model/pytorch_model.bin")
|
53 |
+
print("✅ EvoTransformer retrained and saved to trained_model/")
|
54 |
+
|
55 |
+
if __name__ == "__main__":
|
56 |
+
retrain_and_save()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|