Spaces:
Sleeping
Sleeping
Update evo_model.py
Browse files- evo_model.py +55 -8
evo_model.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
-
# ✅ evo_model.py – HF-compatible wrapper for EvoTransformer
|
| 2 |
-
|
| 3 |
import torch
|
| 4 |
from torch import nn
|
| 5 |
-
from transformers import PreTrainedModel, PretrainedConfig
|
| 6 |
from model import EvoTransformer # assumes your core model is in model.py
|
|
|
|
|
|
|
| 7 |
|
| 8 |
class EvoTransformerConfig(PretrainedConfig):
|
| 9 |
model_type = "evo-transformer"
|
|
@@ -36,17 +36,64 @@ class EvoTransformerForClassification(PreTrainedModel):
|
|
| 36 |
dim_feedforward=config.dim_feedforward,
|
| 37 |
num_layers=config.num_hidden_layers
|
| 38 |
)
|
|
|
|
| 39 |
|
| 40 |
-
def forward(self, input_ids):
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
def save_pretrained(self, save_directory):
|
| 44 |
-
torch.save(self.
|
| 45 |
self.config.save_pretrained(save_directory)
|
| 46 |
|
| 47 |
@classmethod
|
| 48 |
def from_pretrained(cls, load_directory):
|
| 49 |
config = EvoTransformerConfig.from_pretrained(load_directory)
|
| 50 |
model = cls(config)
|
| 51 |
-
model.
|
| 52 |
-
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from torch import nn
|
| 3 |
+
from transformers import PreTrainedModel, PretrainedConfig, AutoTokenizer
|
| 4 |
from model import EvoTransformer # assumes your core model is in model.py
|
| 5 |
+
from torch.utils.data import DataLoader, Dataset
|
| 6 |
+
import torch.optim as optim
|
| 7 |
|
| 8 |
class EvoTransformerConfig(PretrainedConfig):
|
| 9 |
model_type = "evo-transformer"
|
|
|
|
| 36 |
dim_feedforward=config.dim_feedforward,
|
| 37 |
num_layers=config.num_hidden_layers
|
| 38 |
)
|
| 39 |
+
self.classifier = nn.Linear(config.d_model, 2)
|
| 40 |
|
| 41 |
+
def forward(self, input_ids, attention_mask=None):
|
| 42 |
+
x = self.model(input_ids) # (batch_size, seq_len, hidden_size)
|
| 43 |
+
pooled = x[:, 0, :] # Take [CLS]-like first token
|
| 44 |
+
logits = self.classifier(pooled)
|
| 45 |
+
return logits
|
| 46 |
|
| 47 |
def save_pretrained(self, save_directory):
|
| 48 |
+
torch.save(self.state_dict(), f"{save_directory}/pytorch_model.bin")
|
| 49 |
self.config.save_pretrained(save_directory)
|
| 50 |
|
| 51 |
@classmethod
|
| 52 |
def from_pretrained(cls, load_directory):
|
| 53 |
config = EvoTransformerConfig.from_pretrained(load_directory)
|
| 54 |
model = cls(config)
|
| 55 |
+
model.load_state_dict(torch.load(f"{load_directory}/pytorch_model.bin"))
|
| 56 |
+
return model
|
| 57 |
+
|
| 58 |
+
# ✅ Add this retraining logic
|
| 59 |
+
def train_evo_transformer(df, epochs=1):
|
| 60 |
+
class EvoDataset(Dataset):
|
| 61 |
+
def __init__(self, dataframe, tokenizer):
|
| 62 |
+
self.df = dataframe
|
| 63 |
+
self.tokenizer = tokenizer
|
| 64 |
+
|
| 65 |
+
def __len__(self):
|
| 66 |
+
return len(self.df)
|
| 67 |
+
|
| 68 |
+
def __getitem__(self, idx):
|
| 69 |
+
row = self.df.iloc[idx]
|
| 70 |
+
text = f"{row['goal']} [SEP] {row['sol1']} [SEP] {row['sol2']}"
|
| 71 |
+
encoding = self.tokenizer(text, truncation=True, padding='max_length', max_length=64, return_tensors='pt')
|
| 72 |
+
input_ids = encoding['input_ids'].squeeze(0)
|
| 73 |
+
attention_mask = encoding['attention_mask'].squeeze(0)
|
| 74 |
+
label = torch.tensor(0 if row['correct'] == 'Solution 1' else 1)
|
| 75 |
+
return input_ids, attention_mask, label
|
| 76 |
+
|
| 77 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 78 |
+
config = EvoTransformerConfig()
|
| 79 |
+
model = EvoTransformerForClassification(config)
|
| 80 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 81 |
+
model.to(device)
|
| 82 |
+
model.train()
|
| 83 |
+
|
| 84 |
+
dataset = EvoDataset(df, tokenizer)
|
| 85 |
+
loader = DataLoader(dataset, batch_size=8, shuffle=True)
|
| 86 |
+
optimizer = optim.Adam(model.parameters(), lr=2e-5)
|
| 87 |
+
criterion = nn.CrossEntropyLoss()
|
| 88 |
+
|
| 89 |
+
for epoch in range(epochs):
|
| 90 |
+
for input_ids, attention_mask, labels in loader:
|
| 91 |
+
input_ids, attention_mask, labels = input_ids.to(device), attention_mask.to(device), labels.to(device)
|
| 92 |
+
logits = model(input_ids, attention_mask)
|
| 93 |
+
loss = criterion(logits, labels)
|
| 94 |
+
optimizer.zero_grad()
|
| 95 |
+
loss.backward()
|
| 96 |
+
optimizer.step()
|
| 97 |
+
|
| 98 |
+
torch.save(model.state_dict(), "trained_model.pt")
|
| 99 |
+
return True
|