from transformers import AutoTokenizer from evo_model import EvoTransformerForClassification import torch # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") model = EvoTransformerForClassification.from_pretrained("trained_model") model.eval() def generate_response(goal, sol1, sol2): input_text = f"Goal: {goal}\nOption A: {sol1}\nOption B: {sol2}" # Tokenize input inputs = tokenizer( input_text, return_tensors="pt", padding=True, truncation=True, ) # ✅ Filter out unwanted keys (e.g., token_type_ids) filtered_inputs = { k: v for k, v in inputs.items() if k in ["input_ids", "attention_mask"] } # Predict with torch.no_grad(): outputs = model(**filtered_inputs) logits = outputs.logits predicted_class = torch.argmax(logits, dim=1).item() return "A" if predicted_class == 0 else "B"