import torch import torch.nn as nn from transformers import PreTrainedModel, PretrainedConfig class EvoTransformerConfig(PretrainedConfig): def __init__(self, hidden_size=384, num_layers=6, num_labels=2, **kwargs): super().__init__(**kwargs) self.hidden_size = hidden_size self.num_layers = num_layers self.num_labels = num_labels class EvoTransformerForClassification(PreTrainedModel): config_class = EvoTransformerConfig def __init__(self, config): super().__init__(config) self.config = config self.embedding = nn.Embedding(30522, config.hidden_size) # BERT vocab size self.layers = nn.ModuleList([ nn.TransformerEncoderLayer(d_model=config.hidden_size, nhead=6, dim_feedforward=1024) for _ in range(config.num_layers) ]) self.classifier = nn.Sequential( nn.Linear(config.hidden_size, 256), nn.ReLU(), nn.Linear(256, config.num_labels) ) self.init_weights() def forward(self, input_ids, attention_mask=None, labels=None): x = self.embedding(input_ids) # [batch, seq_len, hidden_size] x = x.transpose(0, 1) # Transformer expects [seq_len, batch, hidden_size] for layer in self.layers: x = layer(x, src_key_padding_mask=(attention_mask == 0) if attention_mask is not None else None) x = x.mean(dim=0) # mean pooling over seq_len logits = self.classifier(x) if labels is not None: loss = nn.functional.cross_entropy(logits, labels) return loss, logits return logits def save_pretrained(self, save_directory): import os, json os.makedirs(save_directory, exist_ok=True) torch.save(self.state_dict(), f"{save_directory}/pytorch_model.bin") with open(f"{save_directory}/config.json", "w") as f: f.write(self.config.to_json_string()) @classmethod def from_pretrained(cls, load_directory): config_path = f"{load_directory}/config.json" model_path = f"{load_directory}/pytorch_model.bin" config = EvoTransformerConfig.from_json_file(config_path) model = cls(config) model.load_state_dict(torch.load(model_path, map_location="cpu")) return model