# watchdog.py import firebase_admin from firebase_admin import credentials, firestore import pandas as pd import torch from torch.utils.data import Dataset, DataLoader import torch.nn as nn import torch.optim as optim from model import EvoTransformer # make sure this is in your project import time import datetime import os # ✅ Firebase Setup if not firebase_admin._apps: cred = credentials.Certificate("evotransformer-firebase-adminsdk-fbsvc-37a4b838aa.json") firebase_admin.initialize_app(cred) db = firestore.client() COLLECTION = "evo_feedback_logs" LAST_CHECK_FILE = "last_feedback_timestamp.txt" # ✅ Dataset for training class EvoDataset(Dataset): def __init__(self, data): self.data = data def __getitem__(self, idx): item = self.data[idx] x = f"{item['goal']} [SEP] {item['solution1']} [SEP] {item['solution2']}" y = 0 if item['correct'] == "Solution 1" else 1 return x, y def __len__(self): return len(self.data) # ✅ Dummy tokenizer (replace with your tokenizer if needed) def tokenize(text): return torch.tensor([ord(c) % 128 for c in text[:256]]) # ✅ Fetch new data def fetch_new_feedback(): if os.path.exists(LAST_CHECK_FILE): with open(LAST_CHECK_FILE, "r") as f: last_ts = f.read().strip() else: last_ts = "1970-01-01T00:00:00Z" query = db.collection(COLLECTION).where("timestamp", ">", last_ts) docs = list(query.stream()) feedbacks = [] latest_ts = last_ts for doc in docs: data = doc.to_dict() if all(k in data for k in ["goal", "sol1", "sol2", "correct"]): feedbacks.append({ "goal": data["goal"], "solution1": data["sol1"], "solution2": data["sol2"], "correct": data["correct"] }) latest_ts = max(latest_ts, data.get("timestamp", last_ts)) if feedbacks: with open(LAST_CHECK_FILE, "w") as f: f.write(latest_ts) return feedbacks # ✅ Train Evo on new data def train_on_feedback(feedbacks): if not feedbacks: print("No new feedback to train on.") return print(f"🔁 Retraining on {len(feedbacks)} new examples...") dataset = EvoDataset(feedbacks) dataloader = DataLoader(dataset, batch_size=4, shuffle=True) model = EvoTransformer() if os.path.exists("trained_model.pt"): model.load_state_dict(torch.load("trained_model.pt")) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001) model.train() for epoch in range(3): # quick fine-tuning total_loss = 0 correct = 0 for inputs, labels in dataloader: inputs = torch.stack([tokenize(x) for x in inputs]) optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() total_loss += loss.item() correct += (outputs.argmax(dim=1) == labels).sum().item() acc = correct / len(dataset) print(f"Epoch {epoch+1}: Loss={total_loss:.4f}, Accuracy={acc:.2%}") torch.save(model.state_dict(), "trained_model.pt") print("✅ Updated model saved.") # ✅ Watch Loop def watch(): print("🧠 Evo Watchdog started...") while True: try: new_data = fetch_new_feedback() train_on_feedback(new_data) except Exception as e: print(f"⚠️ Error: {str(e)}") time.sleep(60) # check every 60 seconds def manual_retrain(): new_data = fetch_new_feedback() train_on_feedback(new_data) # Optional: only run loop if executed directly if __name__ == "__main__": watch()