from evo_model import EvoTransformerForClassification from transformers import AutoTokenizer import torch # Load model and tokenizer once model = EvoTransformerForClassification.from_pretrained("trained_model") tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") model.eval() def generate_response(goal, sol1, sol2): prompt = f"Goal: {goal} Option 1: {sol1} Option 2: {sol2}" inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits if hasattr(outputs, "logits") else outputs[0] prediction = torch.argmax(logits, dim=1).item() return "Solution 1" if prediction == 0 else "Solution 2"