import os from transformers import BertTokenizer from evo_model import EvoTransformerConfig, EvoTransformerForClassification def initialize_and_save_model(): # Step 1: Initialize configuration config = EvoTransformerConfig() # Step 2: Initialize model model = EvoTransformerForClassification(config) # Step 3: Save model os.makedirs("trained_model", exist_ok=True) model.save_pretrained("trained_model") # Step 4: Save tokenizer (BERT-based) tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") tokenizer.save_pretrained("trained_model") print("✅ EvoTransformer and tokenizer initialized and saved to 'trained_model/'") def load_model(): model = EvoTransformerForClassification.from_pretrained("trained_model") return model # Optional: reinitialize if run directly if __name__ == "__main__": initialize_and_save_model()