from evo_model import EvoTransformerConfig, EvoTransformerForClassification import os def initialize_and_save_model(save_path="trained_model"): config = EvoTransformerConfig() model = EvoTransformerForClassification(config) os.makedirs(save_path, exist_ok=True) model.save_pretrained(save_path) def retrain_model(): # Dummy retrain function – replace with actual training logic later initialize_and_save_model("trained_model") return "✅ Retrained and saved new model."