File size: 6,699 Bytes
2a79ea8
8c4d10e
 
 
 
 
2a79ea8
 
45789c8
8c4d10e
2a79ea8
 
45789c8
16103a7
 
8c4d10e
16103a7
 
 
 
 
 
45789c8
2a79ea8
45789c8
16103a7
123bf30
16103a7
 
 
 
123bf30
16103a7
123bf30
2a79ea8
123bf30
 
45789c8
16103a7
2a79ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16103a7
123bf30
45789c8
123bf30
16103a7
2a79ea8
16103a7
 
2a79ea8
16103a7
123bf30
8c4d10e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45789c8
8c4d10e
 
 
 
 
 
 
 
 
45789c8
8c4d10e
 
 
 
 
 
 
 
45789c8
8c4d10e
 
 
 
 
 
45789c8
8c4d10e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45789c8
8c4d10e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16103a7
123bf30
16103a7
 
 
 
45789c8
16103a7
 
 
123bf30
 
8c4d10e
123bf30
16103a7
123bf30
 
 
 
 
16103a7
 
123bf30
16103a7
 
123bf30
 
 
 
8c4d10e
 
 
 
123bf30
 
16103a7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
"""
evo_inference.py — Step 8 (FLAN-optimized)
- Generative path uses a FLAN-friendly prompt: Instruction / Context / Question / Answer
- Filters placeholder chunks
- Cleans common prompt-echo lines
- Keeps labeled [Generative] / [Extractive] outputs with safe fallback
"""

from typing import List, Dict
import re
from utils_lang import L, normalize_lang

# Try to load your real Evo plugin first; else use the example; else None.
_GENERATOR = None
try:
    from evo_plugin import load_model as _load_real   # your future file (optional)
    _GENERATOR = _load_real()
except Exception:
    try:
        from evo_plugin_example import load_model as _load_example
        _GENERATOR = _load_example()
    except Exception:
        _GENERATOR = None  # no generator available

MAX_SNIPPET_CHARS = 400


def _snippet(text: str) -> str:
    text = " ".join(text.split())
    return text[:MAX_SNIPPET_CHARS] + ("..." if len(text) > MAX_SNIPPET_CHARS else "")


def _extractive_answer(user_query: str, lang: str, hits: List[Dict]) -> str:
    """Old safe mode: show top snippets + standard steps, now labeled."""
    if not hits:
        return "**[Extractive]**\n\n" + L(lang, "intro_err")

    bullets = [f"- {_snippet(h['text'])}" for h in hits[:4]]
    steps = {
        "en": [
            "• Step 1: Check eligibility & gather required documents.",
            "• Step 2: Confirm fees & payment options.",
            "• Step 3: Apply online or at the indicated office.",
            "• Step 4: Keep reference/receipt; track processing time.",
        ],
        "fr": [
            "• Étape 1 : Vérifiez l’éligibilité et rassemblez les documents requis.",
            "• Étape 2 : Confirmez les frais et les moyens de paiement.",
            "• Étape 3 : Déposez la demande en ligne ou au bureau indiqué.",
            "• Étape 4 : Conservez le reçu/la référence et suivez le délai de traitement.",
        ],
        "mfe": [
            "• Step 1: Get dokiman neseser ek verifie si to elegib.",
            "• Step 2: Konfirm fre ek manyer peyman.",
            "• Step 3: Fer demand online ouswa dan biro ki indike.",
            "• Step 4: Gard referans/reso; swiv letan tretman.",
        ],
    }[normalize_lang(lang)]

    return (
        "**[Extractive]**\n\n"
        f"**{L(lang, 'intro_ok')}**\n\n"
        f"**Q:** {user_query}\n\n"
        f"**Key information:**\n" + "\n".join(bullets) + "\n\n"
        f"**Suggested steps:**\n" + "\n".join(steps)
    )


def _lang_name(code: str) -> str:
    return {"en": "English", "fr": "French", "mfe": "Kreol Morisien"}.get(code, "English")


def _filter_hits(hits: List[Dict], keep: int = 6) -> List[Dict]:
    """
    Prefer non-placeholder chunks; if all are placeholders, return originals.
    """
    filtered = [
        h for h in hits
        if "placeholder" not in h["text"].lower() and "disclaimer" not in h["text"].lower()
    ]
    if not filtered:
        filtered = hits
    return filtered[:keep]


def _build_grounded_prompt(question: str, lang: str, hits: List[Dict]) -> str:
    """
    FLAN-style prompt:
    Instruction: ...
    Context:
    1) ...
    2) ...
    Question: ...
    Answer:
    """
    lang = normalize_lang(lang)
    lang_readable = _lang_name(lang)

    instruction = (
        "You are the Mauritius Government Copilot. Answer ONLY using the provided context. "
        "If a detail is missing (fees, required docs, office or processing time), say so clearly. "
        "Structure the answer as short bullet points with: Required documents, Fees, Where to apply, "
        "Processing time, and Steps. Keep it concise (6–10 lines)."
    )
    if lang == "fr":
        instruction = (
            "Tu es le Copilote Gouvernemental de Maurice. Réponds UNIQUEMENT à partir du contexte fourni. "
            "Si une information manque (frais, documents requis, bureau ou délai), dis-le clairement. "
            "Structure en puces courtes : Documents requis, Frais, Où postuler, Délai de traitement, Étapes. "
            "Reste concis (6–10 lignes)."
        )
    elif lang == "mfe":
        instruction = (
            "To enn Copilot Gouv Moris. Reponn zis lor konteks ki donn. "
            "Si enn detay manke (fre, dokiman, biro, letan tretman), dir li kler. "
            "Servi pwen kout: Dokiman, Fre, Kot pou al, Letan tretman, Steps. "
            "Reste kout (6–10 ligner)."
        )

    chosen = _filter_hits(hits, keep=6)
    ctx_lines = [f"{i+1}) {_snippet(h['text'])}" for i, h in enumerate(chosen)]
    ctx_block = "\n".join(ctx_lines) if ctx_lines else "(none)"

    prompt = (
        f"Instruction ({lang_readable}): {instruction}\n\n"
        f"Context:\n{ctx_block}\n\n"
        f"Question: {question}\n\n"
        f"Answer ({lang_readable}):"
    )
    return prompt


_ECHO_PATTERNS = [
    r"^\s*Instruction.*$", r"^\s*Context:.*$", r"^\s*Question:.*$", r"^\s*Answer.*$",
    r"^\s*\[Instructions?\].*$", r"^\s*Be concise.*$", r"^\s*Do not invent.*$",
    r"^\s*(en|fr|mfe)\s*$",
]

def _clean_generated(text: str) -> str:
    """
    Remove common echoed lines from the model output.
    """
    lines = [ln.strip() for ln in text.strip().splitlines()]
    out = []
    for ln in lines:
        if any(re.match(pat, ln, flags=re.IGNORECASE) for pat in _ECHO_PATTERNS):
            continue
        out.append(ln)
    cleaned = "\n".join(out).strip()
    # extra guard: collapse repeated blank lines
    cleaned = re.sub(r"\n{3,}", "\n\n", cleaned)
    return cleaned


def synthesize_with_evo(
    user_query: str,
    lang: str,
    hits: List[Dict],
    mode: str = "extractive",
    max_new_tokens: int = 192,
    temperature: float = 0.4,
) -> str:
    """
    If mode=='generative' and a generator exists, generate a grounded answer
    (labeled [Generative]). Otherwise, return the labeled extractive fallback.
    """
    lang = normalize_lang(lang)

    # No retrieved context? Stay safe.
    if not hits:
        return _extractive_answer(user_query, lang, hits)

    if mode != "generative" or _GENERATOR is None:
        return _extractive_answer(user_query, lang, hits)

    prompt = _build_grounded_prompt(user_query, lang, hits)
    try:
        text = _GENERATOR.generate(
            prompt,
            max_new_tokens=int(max_new_tokens),
            temperature=float(temperature),
        )
        text = _clean_generated(text)
        # Fallback if empty or suspiciously short
        if not text or len(text) < 20:
            return _extractive_answer(user_query, lang, hits)
        return "**[Generative]**\n\n" + text
    except Exception:
        return _extractive_answer(user_query, lang, hits)