Spaces:
Sleeping
Sleeping
File size: 6,699 Bytes
2a79ea8 8c4d10e 2a79ea8 45789c8 8c4d10e 2a79ea8 45789c8 16103a7 8c4d10e 16103a7 45789c8 2a79ea8 45789c8 16103a7 123bf30 16103a7 123bf30 16103a7 123bf30 2a79ea8 123bf30 45789c8 16103a7 2a79ea8 16103a7 123bf30 45789c8 123bf30 16103a7 2a79ea8 16103a7 2a79ea8 16103a7 123bf30 8c4d10e 45789c8 8c4d10e 45789c8 8c4d10e 45789c8 8c4d10e 45789c8 8c4d10e 45789c8 8c4d10e 16103a7 123bf30 16103a7 45789c8 16103a7 123bf30 8c4d10e 123bf30 16103a7 123bf30 16103a7 123bf30 16103a7 123bf30 8c4d10e 123bf30 16103a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
"""
evo_inference.py — Step 8 (FLAN-optimized)
- Generative path uses a FLAN-friendly prompt: Instruction / Context / Question / Answer
- Filters placeholder chunks
- Cleans common prompt-echo lines
- Keeps labeled [Generative] / [Extractive] outputs with safe fallback
"""
from typing import List, Dict
import re
from utils_lang import L, normalize_lang
# Try to load your real Evo plugin first; else use the example; else None.
_GENERATOR = None
try:
from evo_plugin import load_model as _load_real # your future file (optional)
_GENERATOR = _load_real()
except Exception:
try:
from evo_plugin_example import load_model as _load_example
_GENERATOR = _load_example()
except Exception:
_GENERATOR = None # no generator available
MAX_SNIPPET_CHARS = 400
def _snippet(text: str) -> str:
text = " ".join(text.split())
return text[:MAX_SNIPPET_CHARS] + ("..." if len(text) > MAX_SNIPPET_CHARS else "")
def _extractive_answer(user_query: str, lang: str, hits: List[Dict]) -> str:
"""Old safe mode: show top snippets + standard steps, now labeled."""
if not hits:
return "**[Extractive]**\n\n" + L(lang, "intro_err")
bullets = [f"- {_snippet(h['text'])}" for h in hits[:4]]
steps = {
"en": [
"• Step 1: Check eligibility & gather required documents.",
"• Step 2: Confirm fees & payment options.",
"• Step 3: Apply online or at the indicated office.",
"• Step 4: Keep reference/receipt; track processing time.",
],
"fr": [
"• Étape 1 : Vérifiez l’éligibilité et rassemblez les documents requis.",
"• Étape 2 : Confirmez les frais et les moyens de paiement.",
"• Étape 3 : Déposez la demande en ligne ou au bureau indiqué.",
"• Étape 4 : Conservez le reçu/la référence et suivez le délai de traitement.",
],
"mfe": [
"• Step 1: Get dokiman neseser ek verifie si to elegib.",
"• Step 2: Konfirm fre ek manyer peyman.",
"• Step 3: Fer demand online ouswa dan biro ki indike.",
"• Step 4: Gard referans/reso; swiv letan tretman.",
],
}[normalize_lang(lang)]
return (
"**[Extractive]**\n\n"
f"**{L(lang, 'intro_ok')}**\n\n"
f"**Q:** {user_query}\n\n"
f"**Key information:**\n" + "\n".join(bullets) + "\n\n"
f"**Suggested steps:**\n" + "\n".join(steps)
)
def _lang_name(code: str) -> str:
return {"en": "English", "fr": "French", "mfe": "Kreol Morisien"}.get(code, "English")
def _filter_hits(hits: List[Dict], keep: int = 6) -> List[Dict]:
"""
Prefer non-placeholder chunks; if all are placeholders, return originals.
"""
filtered = [
h for h in hits
if "placeholder" not in h["text"].lower() and "disclaimer" not in h["text"].lower()
]
if not filtered:
filtered = hits
return filtered[:keep]
def _build_grounded_prompt(question: str, lang: str, hits: List[Dict]) -> str:
"""
FLAN-style prompt:
Instruction: ...
Context:
1) ...
2) ...
Question: ...
Answer:
"""
lang = normalize_lang(lang)
lang_readable = _lang_name(lang)
instruction = (
"You are the Mauritius Government Copilot. Answer ONLY using the provided context. "
"If a detail is missing (fees, required docs, office or processing time), say so clearly. "
"Structure the answer as short bullet points with: Required documents, Fees, Where to apply, "
"Processing time, and Steps. Keep it concise (6–10 lines)."
)
if lang == "fr":
instruction = (
"Tu es le Copilote Gouvernemental de Maurice. Réponds UNIQUEMENT à partir du contexte fourni. "
"Si une information manque (frais, documents requis, bureau ou délai), dis-le clairement. "
"Structure en puces courtes : Documents requis, Frais, Où postuler, Délai de traitement, Étapes. "
"Reste concis (6–10 lignes)."
)
elif lang == "mfe":
instruction = (
"To enn Copilot Gouv Moris. Reponn zis lor konteks ki donn. "
"Si enn detay manke (fre, dokiman, biro, letan tretman), dir li kler. "
"Servi pwen kout: Dokiman, Fre, Kot pou al, Letan tretman, Steps. "
"Reste kout (6–10 ligner)."
)
chosen = _filter_hits(hits, keep=6)
ctx_lines = [f"{i+1}) {_snippet(h['text'])}" for i, h in enumerate(chosen)]
ctx_block = "\n".join(ctx_lines) if ctx_lines else "(none)"
prompt = (
f"Instruction ({lang_readable}): {instruction}\n\n"
f"Context:\n{ctx_block}\n\n"
f"Question: {question}\n\n"
f"Answer ({lang_readable}):"
)
return prompt
_ECHO_PATTERNS = [
r"^\s*Instruction.*$", r"^\s*Context:.*$", r"^\s*Question:.*$", r"^\s*Answer.*$",
r"^\s*\[Instructions?\].*$", r"^\s*Be concise.*$", r"^\s*Do not invent.*$",
r"^\s*(en|fr|mfe)\s*$",
]
def _clean_generated(text: str) -> str:
"""
Remove common echoed lines from the model output.
"""
lines = [ln.strip() for ln in text.strip().splitlines()]
out = []
for ln in lines:
if any(re.match(pat, ln, flags=re.IGNORECASE) for pat in _ECHO_PATTERNS):
continue
out.append(ln)
cleaned = "\n".join(out).strip()
# extra guard: collapse repeated blank lines
cleaned = re.sub(r"\n{3,}", "\n\n", cleaned)
return cleaned
def synthesize_with_evo(
user_query: str,
lang: str,
hits: List[Dict],
mode: str = "extractive",
max_new_tokens: int = 192,
temperature: float = 0.4,
) -> str:
"""
If mode=='generative' and a generator exists, generate a grounded answer
(labeled [Generative]). Otherwise, return the labeled extractive fallback.
"""
lang = normalize_lang(lang)
# No retrieved context? Stay safe.
if not hits:
return _extractive_answer(user_query, lang, hits)
if mode != "generative" or _GENERATOR is None:
return _extractive_answer(user_query, lang, hits)
prompt = _build_grounded_prompt(user_query, lang, hits)
try:
text = _GENERATOR.generate(
prompt,
max_new_tokens=int(max_new_tokens),
temperature=float(temperature),
)
text = _clean_generated(text)
# Fallback if empty or suspiciously short
if not text or len(text) < 20:
return _extractive_answer(user_query, lang, hits)
return "**[Generative]**\n\n" + text
except Exception:
return _extractive_answer(user_query, lang, hits)
|