Spaces:
Sleeping
Sleeping
File size: 6,663 Bytes
2a79ea8 af358ab 8c4d10e af358ab 2a79ea8 45789c8 8c4d10e 2a79ea8 45789c8 16103a7 af358ab 16103a7 af358ab 2a79ea8 45789c8 16103a7 2a79ea8 123bf30 45789c8 16103a7 2a79ea8 16103a7 45789c8 123bf30 16103a7 2a79ea8 16103a7 2a79ea8 16103a7 8c4d10e af358ab 8c4d10e 45789c8 8c4d10e af358ab 8c4d10e af358ab 8c4d10e 45789c8 8c4d10e 45789c8 8c4d10e af358ab 8c4d10e 45789c8 8c4d10e af358ab 8c4d10e af358ab 8c4d10e af358ab 45789c8 8c4d10e af358ab 8c4d10e 16103a7 af358ab 123bf30 16103a7 45789c8 16103a7 af358ab 16103a7 123bf30 af358ab 16103a7 123bf30 16103a7 123bf30 8c4d10e af358ab 123bf30 16103a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
"""
evo_inference.py — FLAN-optimized + anti-echo
- FLAN-friendly prompt with explicit bullet structure
- Filters placeholder chunks
- Cleans prompt-echo lines
- Anti-echo guard: if the model repeats the question or outputs too little, we fall back to Extractive
- Labeled outputs: [Generative] / [Extractive]
"""
from typing import List, Dict
import re
from utils_lang import L, normalize_lang
# Try to load your real Evo plugin first; else use the example; else None.
_GENERATOR = None
try:
from evo_plugin import load_model as _load_real
_GENERATOR = _load_real()
except Exception:
try:
from evo_plugin_example import load_model as _load_example
_GENERATOR = _load_example()
except Exception:
_GENERATOR = None
MAX_SNIPPET_CHARS = 400
def _snippet(text: str) -> str:
text = " ".join(text.split())
return text[:MAX_SNIPPET_CHARS] + ("..." if len(text) > MAX_SNIPPET_CHARS else "")
def _extractive_answer(user_query: str, lang: str, hits: List[Dict]) -> str:
if not hits:
return "**[Extractive]**\n\n" + L(lang, "intro_err")
bullets = [f"- {_snippet(h['text'])}" for h in hits[:4]]
steps = {
"en": [
"• Step 1: Check eligibility & gather required documents.",
"• Step 2: Confirm fees & payment options.",
"• Step 3: Apply online or at the indicated office.",
"• Step 4: Keep reference/receipt; track processing time.",
],
"fr": [
"• Étape 1 : Vérifiez l’éligibilité et rassemblez les documents requis.",
"• Étape 2 : Confirmez les frais et les moyens de paiement.",
"• Étape 3 : Déposez la demande en ligne ou au bureau indiqué.",
"• Étape 4 : Conservez le reçu/la référence et suivez le délai de traitement.",
],
"mfe": [
"• Step 1: Get dokiman neseser ek verifie si to elegib.",
"• Step 2: Konfirm fre ek manyer peyman.",
"• Step 3: Fer demand online ouswa dan biro ki indike.",
"• Step 4: Gard referans/reso; swiv letan tretman.",
],
}[normalize_lang(lang)]
return (
"**[Extractive]**\n\n"
f"**{L(lang, 'intro_ok')}**\n\n"
f"**Q:** {user_query}\n\n"
f"**Key information:**\n" + "\n".join(bullets) + "\n\n"
f"**Suggested steps:**\n" + "\n".join(steps)
)
def _lang_name(code: str) -> str:
return {"en": "English", "fr": "French", "mfe": "Kreol Morisien"}.get(code, "English")
def _filter_hits(hits: List[Dict], keep: int = 6) -> List[Dict]:
# Prefer non-placeholder chunks; if all are placeholders, return originals.
filtered = [h for h in hits if "placeholder" not in h["text"].lower() and "disclaimer" not in h["text"].lower()]
if not filtered:
filtered = hits
return filtered[:keep]
def _build_grounded_prompt(question: str, lang: str, hits: List[Dict]) -> str:
"""
FLAN-style prompt:
Instruction: (clear constraints)
Context: 1) ... 2) ...
Question: ...
Answer: - bullet - bullet ...
"""
lang = normalize_lang(lang)
lang_readable = _lang_name(lang)
if lang == "fr":
instruction = (
"Tu es le Copilote Gouvernemental de Maurice. Réponds UNIQUEMENT à partir du contexte. "
"Ne répète pas la question. Donne 6–10 puces courtes couvrant: Documents requis, Frais, "
"Où postuler, Délai de traitement, Étapes. Si une info manque, dis-le. Pas d'autres sections."
)
elif lang == "mfe":
instruction = (
"To enn Copilot Gouv Moris. Reponn zis lor konteks. Pa repete kestyon. Donn 6–10 pwin kout "
"lor: Dokiman, Fre, Kot pou al, Letan tretman, Steps. Si info manke, dir li. Pa azout seksion anplis."
)
else:
instruction = (
"You are the Mauritius Government Copilot. Use ONLY the context. Do not repeat the question. "
"Write 6–10 short bullet points covering: Required documents, Fees, Where to apply, "
"Processing time, and Steps. If something is missing, say so. No extra sections."
)
chosen = _filter_hits(hits, keep=6)
ctx_lines = [f"{i+1}) {_snippet(h['text'])}" for i, h in enumerate(chosen)]
ctx_block = "\n".join(ctx_lines) if ctx_lines else "(none)"
# Prime with a leading dash to encourage bullets.
prompt = (
f"Instruction ({lang_readable}): {instruction}\n\n"
f"Context:\n{ctx_block}\n\n"
f"Question: {question}\n\n"
f"Answer ({lang_readable}):\n- "
)
return prompt
_ECHO_PATTERNS = [
r"^\s*Instruction.*$", r"^\s*Context:.*$", r"^\s*Question:.*$", r"^\s*Answer.*$",
r"^\s*\[Instructions?\].*$", r"^\s*Be concise.*$", r"^\s*Do not invent.*$",
r"^\s*(en|fr|mfe)\s*$",
]
def _clean_generated(text: str) -> str:
# Remove common echoed lines from the model output.
lines = [ln.strip() for ln in text.strip().splitlines()]
out = []
for ln in lines:
if any(re.match(pat, ln, flags=re.IGNORECASE) for pat in _ECHO_PATTERNS):
continue
out.append(ln)
cleaned = "\n".join(out).strip()
cleaned = re.sub(r"\n{3,}", "\n\n", cleaned)
return cleaned
def _is_echo_or_too_short(ans: str, question: str) -> bool:
# Normalize and check if answer is basically the question or too short.
a = re.sub(r"\W+", " ", (ans or "").lower()).strip()
q = re.sub(r"\W+", " ", (question or "").lower()).strip()
if len(a) < 40:
return True
if q and (a.startswith(q) or q in a[: max(80, len(q) + 10)]):
return True
return False
def synthesize_with_evo(
user_query: str,
lang: str,
hits: List[Dict],
mode: str = "extractive",
max_new_tokens: int = 192,
temperature: float = 0.4,
) -> str:
# No context → safe fallback
lang = normalize_lang(lang)
if not hits:
return _extractive_answer(user_query, lang, hits)
# Extractive path or no generator available
if mode != "generative" or _GENERATOR is None:
return _extractive_answer(user_query, lang, hits)
prompt = _build_grounded_prompt(user_query, lang, hits)
try:
text = _GENERATOR.generate(
prompt,
max_new_tokens=int(max_new_tokens),
temperature=float(temperature),
)
text = _clean_generated(text)
if _is_echo_or_too_short(text, user_query):
return _extractive_answer(user_query, lang, hits)
return "**[Generative]**\n\n" + text
except Exception:
return _extractive_answer(user_query, lang, hits)
|