File size: 6,663 Bytes
2a79ea8
af358ab
 
8c4d10e
af358ab
 
 
2a79ea8
 
45789c8
8c4d10e
2a79ea8
 
45789c8
16103a7
 
af358ab
16103a7
 
 
 
 
 
af358ab
2a79ea8
45789c8
16103a7
 
 
 
 
 
2a79ea8
123bf30
45789c8
16103a7
2a79ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16103a7
45789c8
123bf30
16103a7
2a79ea8
16103a7
 
2a79ea8
16103a7
8c4d10e
 
 
 
af358ab
 
8c4d10e
 
 
 
45789c8
8c4d10e
 
af358ab
 
8c4d10e
af358ab
8c4d10e
45789c8
8c4d10e
 
45789c8
8c4d10e
af358ab
 
 
8c4d10e
45789c8
8c4d10e
af358ab
 
 
 
 
 
 
 
8c4d10e
 
 
 
 
 
af358ab
8c4d10e
 
 
 
af358ab
45789c8
8c4d10e
 
 
 
 
 
 
 
 
af358ab
8c4d10e
 
 
 
 
 
 
 
 
16103a7
af358ab
 
 
 
 
 
 
 
 
123bf30
16103a7
 
 
 
45789c8
16103a7
 
 
af358ab
16103a7
123bf30
 
 
af358ab
16103a7
 
123bf30
16103a7
 
123bf30
 
 
 
8c4d10e
 
af358ab
123bf30
 
16103a7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
"""
evo_inference.py — FLAN-optimized + anti-echo
- FLAN-friendly prompt with explicit bullet structure
- Filters placeholder chunks
- Cleans prompt-echo lines
- Anti-echo guard: if the model repeats the question or outputs too little, we fall back to Extractive
- Labeled outputs: [Generative] / [Extractive]
"""

from typing import List, Dict
import re
from utils_lang import L, normalize_lang

# Try to load your real Evo plugin first; else use the example; else None.
_GENERATOR = None
try:
    from evo_plugin import load_model as _load_real
    _GENERATOR = _load_real()
except Exception:
    try:
        from evo_plugin_example import load_model as _load_example
        _GENERATOR = _load_example()
    except Exception:
        _GENERATOR = None

MAX_SNIPPET_CHARS = 400

def _snippet(text: str) -> str:
    text = " ".join(text.split())
    return text[:MAX_SNIPPET_CHARS] + ("..." if len(text) > MAX_SNIPPET_CHARS else "")

def _extractive_answer(user_query: str, lang: str, hits: List[Dict]) -> str:
    if not hits:
        return "**[Extractive]**\n\n" + L(lang, "intro_err")
    bullets = [f"- {_snippet(h['text'])}" for h in hits[:4]]
    steps = {
        "en": [
            "• Step 1: Check eligibility & gather required documents.",
            "• Step 2: Confirm fees & payment options.",
            "• Step 3: Apply online or at the indicated office.",
            "• Step 4: Keep reference/receipt; track processing time.",
        ],
        "fr": [
            "• Étape 1 : Vérifiez l’éligibilité et rassemblez les documents requis.",
            "• Étape 2 : Confirmez les frais et les moyens de paiement.",
            "• Étape 3 : Déposez la demande en ligne ou au bureau indiqué.",
            "• Étape 4 : Conservez le reçu/la référence et suivez le délai de traitement.",
        ],
        "mfe": [
            "• Step 1: Get dokiman neseser ek verifie si to elegib.",
            "• Step 2: Konfirm fre ek manyer peyman.",
            "• Step 3: Fer demand online ouswa dan biro ki indike.",
            "• Step 4: Gard referans/reso; swiv letan tretman.",
        ],
    }[normalize_lang(lang)]
    return (
        "**[Extractive]**\n\n"
        f"**{L(lang, 'intro_ok')}**\n\n"
        f"**Q:** {user_query}\n\n"
        f"**Key information:**\n" + "\n".join(bullets) + "\n\n"
        f"**Suggested steps:**\n" + "\n".join(steps)
    )

def _lang_name(code: str) -> str:
    return {"en": "English", "fr": "French", "mfe": "Kreol Morisien"}.get(code, "English")

def _filter_hits(hits: List[Dict], keep: int = 6) -> List[Dict]:
    # Prefer non-placeholder chunks; if all are placeholders, return originals.
    filtered = [h for h in hits if "placeholder" not in h["text"].lower() and "disclaimer" not in h["text"].lower()]
    if not filtered:
        filtered = hits
    return filtered[:keep]

def _build_grounded_prompt(question: str, lang: str, hits: List[Dict]) -> str:
    """
    FLAN-style prompt:
    Instruction: (clear constraints)
    Context: 1) ... 2) ...
    Question: ...
    Answer:  - bullet  - bullet ...
    """
    lang = normalize_lang(lang)
    lang_readable = _lang_name(lang)

    if lang == "fr":
        instruction = (
            "Tu es le Copilote Gouvernemental de Maurice. Réponds UNIQUEMENT à partir du contexte. "
            "Ne répète pas la question. Donne 6–10 puces courtes couvrant: Documents requis, Frais, "
            "Où postuler, Délai de traitement, Étapes. Si une info manque, dis-le. Pas d'autres sections."
        )
    elif lang == "mfe":
        instruction = (
            "To enn Copilot Gouv Moris. Reponn zis lor konteks. Pa repete kestyon. Donn 6–10 pwin kout "
            "lor: Dokiman, Fre, Kot pou al, Letan tretman, Steps. Si info manke, dir li. Pa azout seksion anplis."
        )
    else:
        instruction = (
            "You are the Mauritius Government Copilot. Use ONLY the context. Do not repeat the question. "
            "Write 6–10 short bullet points covering: Required documents, Fees, Where to apply, "
            "Processing time, and Steps. If something is missing, say so. No extra sections."
        )

    chosen = _filter_hits(hits, keep=6)
    ctx_lines = [f"{i+1}) {_snippet(h['text'])}" for i, h in enumerate(chosen)]
    ctx_block = "\n".join(ctx_lines) if ctx_lines else "(none)"

    # Prime with a leading dash to encourage bullets.
    prompt = (
        f"Instruction ({lang_readable}): {instruction}\n\n"
        f"Context:\n{ctx_block}\n\n"
        f"Question: {question}\n\n"
        f"Answer ({lang_readable}):\n- "
    )
    return prompt

_ECHO_PATTERNS = [
    r"^\s*Instruction.*$", r"^\s*Context:.*$", r"^\s*Question:.*$", r"^\s*Answer.*$",
    r"^\s*\[Instructions?\].*$", r"^\s*Be concise.*$", r"^\s*Do not invent.*$",
    r"^\s*(en|fr|mfe)\s*$",
]

def _clean_generated(text: str) -> str:
    # Remove common echoed lines from the model output.
    lines = [ln.strip() for ln in text.strip().splitlines()]
    out = []
    for ln in lines:
        if any(re.match(pat, ln, flags=re.IGNORECASE) for pat in _ECHO_PATTERNS):
            continue
        out.append(ln)
    cleaned = "\n".join(out).strip()
    cleaned = re.sub(r"\n{3,}", "\n\n", cleaned)
    return cleaned

def _is_echo_or_too_short(ans: str, question: str) -> bool:
    # Normalize and check if answer is basically the question or too short.
    a = re.sub(r"\W+", " ", (ans or "").lower()).strip()
    q = re.sub(r"\W+", " ", (question or "").lower()).strip()
    if len(a) < 40:
        return True
    if q and (a.startswith(q) or q in a[: max(80, len(q) + 10)]):
        return True
    return False

def synthesize_with_evo(
    user_query: str,
    lang: str,
    hits: List[Dict],
    mode: str = "extractive",
    max_new_tokens: int = 192,
    temperature: float = 0.4,
) -> str:
    # No context → safe fallback
    lang = normalize_lang(lang)
    if not hits:
        return _extractive_answer(user_query, lang, hits)

    # Extractive path or no generator available
    if mode != "generative" or _GENERATOR is None:
        return _extractive_answer(user_query, lang, hits)

    prompt = _build_grounded_prompt(user_query, lang, hits)
    try:
        text = _GENERATOR.generate(
            prompt,
            max_new_tokens=int(max_new_tokens),
            temperature=float(temperature),
        )
        text = _clean_generated(text)
        if _is_echo_or_too_short(text, user_query):
            return _extractive_answer(user_query, lang, hits)
        return "**[Generative]**\n\n" + text
    except Exception:
        return _extractive_answer(user_query, lang, hits)