File size: 5,275 Bytes
2a79ea8
123bf30
45789c8
 
 
123bf30
 
 
 
45789c8
 
 
123bf30
2a79ea8
 
45789c8
2a79ea8
 
45789c8
16103a7
 
45789c8
16103a7
 
 
 
 
 
45789c8
2a79ea8
45789c8
16103a7
123bf30
16103a7
 
 
 
123bf30
16103a7
123bf30
2a79ea8
123bf30
 
45789c8
16103a7
2a79ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16103a7
123bf30
45789c8
123bf30
16103a7
2a79ea8
16103a7
 
2a79ea8
16103a7
123bf30
45789c8
 
 
 
 
 
 
 
 
 
 
 
 
 
123bf30
45789c8
 
 
 
 
 
16103a7
123bf30
16103a7
 
 
 
45789c8
16103a7
 
 
123bf30
 
 
 
16103a7
123bf30
 
 
 
 
16103a7
 
123bf30
16103a7
 
123bf30
 
 
 
 
 
 
 
 
 
 
16103a7
123bf30
16103a7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
"""
evo_inference.py — Step 8 (refined)
Adds a GENERATIVE path using a small plugin (FLAN-T5 stand-in) while keeping the
old EXTRACTIVE fallback (bullet points) if generation isn't available.

What's new in this refinement:
- Answers are explicitly labeled **[Generative]** or **[Extractive]** so you
  can tell which path ran at a glance.

How it works:
- We try to import your real evo plugin (evo_plugin.py). If not found, we load
  evo_plugin_example.py instead. If both fail, we stay in extractive mode.
- synthesize_with_evo(...) accepts mode/temp/max_tokens from the UI.
"""

from typing import List, Dict
from utils_lang import L, normalize_lang

# Try to load your real Evo plugin first; else use the example; else None.
_GENERATOR = None
try:
    from evo_plugin import load_model as _load_real   # <- your future file (optional)
    _GENERATOR = _load_real()
except Exception:
    try:
        from evo_plugin_example import load_model as _load_example
        _GENERATOR = _load_example()
    except Exception:
        _GENERATOR = None  # no generator available

MAX_SNIPPET_CHARS = 400


def _snippet(text: str) -> str:
    text = " ".join(text.split())
    return text[:MAX_SNIPPET_CHARS] + ("..." if len(text) > MAX_SNIPPET_CHARS else "")


def _extractive_answer(user_query: str, lang: str, hits: List[Dict]) -> str:
    """Old safe mode: show top snippets + standard steps, now labeled."""
    if not hits:
        return "**[Extractive]**\n\n" + L(lang, "intro_err")

    bullets = [f"- {_snippet(h['text'])}" for h in hits[:4]]
    steps = {
        "en": [
            "• Step 1: Check eligibility & gather required documents.",
            "• Step 2: Confirm fees & payment options.",
            "• Step 3: Apply online or at the indicated office.",
            "• Step 4: Keep reference/receipt; track processing time.",
        ],
        "fr": [
            "• Étape 1 : Vérifiez l’éligibilité et rassemblez les documents requis.",
            "• Étape 2 : Confirmez les frais et les moyens de paiement.",
            "• Étape 3 : Déposez la demande en ligne ou au bureau indiqué.",
            "• Étape 4 : Conservez le reçu/la référence et suivez le délai de traitement.",
        ],
        "mfe": [
            "• Step 1: Get dokiman neseser ek verifie si to elegib.",
            "• Step 2: Konfirm fre ek manyer peyman.",
            "• Step 3: Fer demand online ouswa dan biro ki indike.",
            "• Step 4: Gard referans/reso; swiv letan tretman.",
        ],
    }[normalize_lang(lang)]

    return (
        "**[Extractive]**\n\n"
        f"**{L(lang, 'intro_ok')}**\n\n"
        f"**Q:** {user_query}\n\n"
        f"**Key information:**\n" + "\n".join(bullets) + "\n\n"
        f"**Suggested steps:**\n" + "\n".join(steps)
    )


def _build_grounded_prompt(question: str, lang: str, hits: List[Dict]) -> str:
    """Create a compact prompt that includes the question + top retrieved snippets."""
    lang = normalize_lang(lang)
    if lang == "fr":
        system = ("Tu es le Copilote Gouvernemental de Maurice. Réponds clairement, étape "
                  "par étape, en te basant UNIQUEMENT sur le contexte. Inclure: documents requis, "
                  "frais, où postuler, délais. Dire si une info manque.")
    elif lang == "mfe":
        system = ("To enn Copilot Gouv Moris. Reponn kler ek pas-a-pas, servi zis konteks ki donn. "
                  "Met: ki dokiman bizin, fre, kot pou al, delai. Dir si info manke.")
    else:
        system = ("You are the Mauritius Government Copilot. Answer clearly and step-by-step using "
                  "ONLY the provided context. Include: required documents, fees, where to apply, "
                  "processing time. State if anything is missing.")

    ctx = "\n".join([f"[Context #{i+1}] {_snippet(h['text'])}" for i, h in enumerate(hits[:6])]) or "[Context] (none)"
    return (
        f"{system}\n\n[Question]\n{question}\n\n{ctx}\n\n"
        f"[Instructions]\n- Be concise (6–10 lines)\n- Use bullet steps\n"
        f"- Do not invent links/fees\n- Answer in language code: {lang}\n[Answer]\n"
    )


def synthesize_with_evo(
    user_query: str,
    lang: str,
    hits: List[Dict],
    mode: str = "extractive",
    max_new_tokens: int = 192,
    temperature: float = 0.4,
) -> str:
    """
    If mode=='generative' and a generator exists, generate a grounded answer
    and label it **[Generative]**. Otherwise, return the labeled extractive fallback.
    """
    lang = normalize_lang(lang)

    # No retrieved context? Stay safe.
    if not hits:
        return _extractive_answer(user_query, lang, hits)

    if mode != "generative" or _GENERATOR is None:
        return _extractive_answer(user_query, lang, hits)

    prompt = _build_grounded_prompt(user_query, lang, hits)
    try:
        text = _GENERATOR.generate(
            prompt,
            max_new_tokens=int(max_new_tokens),
            temperature=float(temperature),
        ).strip()

        if not text:
            return _extractive_answer(user_query, lang, hits)

        return "**[Generative]**\n\n" + text

    except Exception:
        # Any runtime issue falls back to safe mode
        return _extractive_answer(user_query, lang, hits)