Spaces:
Sleeping
Sleeping
File size: 5,275 Bytes
2a79ea8 123bf30 45789c8 123bf30 45789c8 123bf30 2a79ea8 45789c8 2a79ea8 45789c8 16103a7 45789c8 16103a7 45789c8 2a79ea8 45789c8 16103a7 123bf30 16103a7 123bf30 16103a7 123bf30 2a79ea8 123bf30 45789c8 16103a7 2a79ea8 16103a7 123bf30 45789c8 123bf30 16103a7 2a79ea8 16103a7 2a79ea8 16103a7 123bf30 45789c8 123bf30 45789c8 16103a7 123bf30 16103a7 45789c8 16103a7 123bf30 16103a7 123bf30 16103a7 123bf30 16103a7 123bf30 16103a7 123bf30 16103a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
"""
evo_inference.py — Step 8 (refined)
Adds a GENERATIVE path using a small plugin (FLAN-T5 stand-in) while keeping the
old EXTRACTIVE fallback (bullet points) if generation isn't available.
What's new in this refinement:
- Answers are explicitly labeled **[Generative]** or **[Extractive]** so you
can tell which path ran at a glance.
How it works:
- We try to import your real evo plugin (evo_plugin.py). If not found, we load
evo_plugin_example.py instead. If both fail, we stay in extractive mode.
- synthesize_with_evo(...) accepts mode/temp/max_tokens from the UI.
"""
from typing import List, Dict
from utils_lang import L, normalize_lang
# Try to load your real Evo plugin first; else use the example; else None.
_GENERATOR = None
try:
from evo_plugin import load_model as _load_real # <- your future file (optional)
_GENERATOR = _load_real()
except Exception:
try:
from evo_plugin_example import load_model as _load_example
_GENERATOR = _load_example()
except Exception:
_GENERATOR = None # no generator available
MAX_SNIPPET_CHARS = 400
def _snippet(text: str) -> str:
text = " ".join(text.split())
return text[:MAX_SNIPPET_CHARS] + ("..." if len(text) > MAX_SNIPPET_CHARS else "")
def _extractive_answer(user_query: str, lang: str, hits: List[Dict]) -> str:
"""Old safe mode: show top snippets + standard steps, now labeled."""
if not hits:
return "**[Extractive]**\n\n" + L(lang, "intro_err")
bullets = [f"- {_snippet(h['text'])}" for h in hits[:4]]
steps = {
"en": [
"• Step 1: Check eligibility & gather required documents.",
"• Step 2: Confirm fees & payment options.",
"• Step 3: Apply online or at the indicated office.",
"• Step 4: Keep reference/receipt; track processing time.",
],
"fr": [
"• Étape 1 : Vérifiez l’éligibilité et rassemblez les documents requis.",
"• Étape 2 : Confirmez les frais et les moyens de paiement.",
"• Étape 3 : Déposez la demande en ligne ou au bureau indiqué.",
"• Étape 4 : Conservez le reçu/la référence et suivez le délai de traitement.",
],
"mfe": [
"• Step 1: Get dokiman neseser ek verifie si to elegib.",
"• Step 2: Konfirm fre ek manyer peyman.",
"• Step 3: Fer demand online ouswa dan biro ki indike.",
"• Step 4: Gard referans/reso; swiv letan tretman.",
],
}[normalize_lang(lang)]
return (
"**[Extractive]**\n\n"
f"**{L(lang, 'intro_ok')}**\n\n"
f"**Q:** {user_query}\n\n"
f"**Key information:**\n" + "\n".join(bullets) + "\n\n"
f"**Suggested steps:**\n" + "\n".join(steps)
)
def _build_grounded_prompt(question: str, lang: str, hits: List[Dict]) -> str:
"""Create a compact prompt that includes the question + top retrieved snippets."""
lang = normalize_lang(lang)
if lang == "fr":
system = ("Tu es le Copilote Gouvernemental de Maurice. Réponds clairement, étape "
"par étape, en te basant UNIQUEMENT sur le contexte. Inclure: documents requis, "
"frais, où postuler, délais. Dire si une info manque.")
elif lang == "mfe":
system = ("To enn Copilot Gouv Moris. Reponn kler ek pas-a-pas, servi zis konteks ki donn. "
"Met: ki dokiman bizin, fre, kot pou al, delai. Dir si info manke.")
else:
system = ("You are the Mauritius Government Copilot. Answer clearly and step-by-step using "
"ONLY the provided context. Include: required documents, fees, where to apply, "
"processing time. State if anything is missing.")
ctx = "\n".join([f"[Context #{i+1}] {_snippet(h['text'])}" for i, h in enumerate(hits[:6])]) or "[Context] (none)"
return (
f"{system}\n\n[Question]\n{question}\n\n{ctx}\n\n"
f"[Instructions]\n- Be concise (6–10 lines)\n- Use bullet steps\n"
f"- Do not invent links/fees\n- Answer in language code: {lang}\n[Answer]\n"
)
def synthesize_with_evo(
user_query: str,
lang: str,
hits: List[Dict],
mode: str = "extractive",
max_new_tokens: int = 192,
temperature: float = 0.4,
) -> str:
"""
If mode=='generative' and a generator exists, generate a grounded answer
and label it **[Generative]**. Otherwise, return the labeled extractive fallback.
"""
lang = normalize_lang(lang)
# No retrieved context? Stay safe.
if not hits:
return _extractive_answer(user_query, lang, hits)
if mode != "generative" or _GENERATOR is None:
return _extractive_answer(user_query, lang, hits)
prompt = _build_grounded_prompt(user_query, lang, hits)
try:
text = _GENERATOR.generate(
prompt,
max_new_tokens=int(max_new_tokens),
temperature=float(temperature),
).strip()
if not text:
return _extractive_answer(user_query, lang, hits)
return "**[Generative]**\n\n" + text
except Exception:
# Any runtime issue falls back to safe mode
return _extractive_answer(user_query, lang, hits)
|