Spaces:
Sleeping
Sleeping
File size: 10,282 Bytes
2a79ea8 c487bf4 2a79ea8 45789c8 8c4d10e 2a79ea8 45789c8 16103a7 af358ab 16103a7 af358ab 2a79ea8 c487bf4 16103a7 c487bf4 16103a7 2a79ea8 123bf30 45789c8 16103a7 2a79ea8 16103a7 45789c8 123bf30 16103a7 2a79ea8 16103a7 2a79ea8 16103a7 c487bf4 8c4d10e c487bf4 8c4d10e c487bf4 8c4d10e c487bf4 8c4d10e c487bf4 8c4d10e c487bf4 8c4d10e c487bf4 8c4d10e 16103a7 c487bf4 af358ab c487bf4 af358ab c487bf4 af358ab 123bf30 c487bf4 16103a7 45789c8 16103a7 c487bf4 16103a7 c487bf4 123bf30 c487bf4 16103a7 c487bf4 123bf30 c487bf4 16103a7 123bf30 8c4d10e c487bf4 123bf30 16103a7 c487bf4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
"""
evo_inference.py — FLAN-optimized + topic router + anti-echo/off-topic
- Routes queries to the right topic (passport / driving / civil status / business)
- Prefers chunks whose filename/text match the topic; filters placeholders
- FLAN-friendly prompt; cleans prompt-echo; falls back if echo/too short/off-topic
- Labels outputs: [Generative] / [Extractive]
"""
from typing import List, Dict
import re
from utils_lang import L, normalize_lang
# Try to load your real Evo plugin first; else use the example; else None.
_GENERATOR = None
try:
from evo_plugin import load_model as _load_real
_GENERATOR = _load_real()
except Exception:
try:
from evo_plugin_example import load_model as _load_example
_GENERATOR = _load_example()
except Exception:
_GENERATOR = None
# Keep snippets short so FLAN-T5 stays within encoder limit (512)
MAX_SNIPPET_CHARS = 220
def _snippet(text: str) -> str:
text = " ".join(text.split())
return text[:MAX_SNIPPET_CHARS] + ("..." if len(text) > MAX_SNIPPET_CHARS else "")
def _extractive_answer(user_query: str, lang: str, hits: List[Dict]) -> str:
if not hits:
return "**[Extractive]**\n\n" + L(lang, "intro_err")
bullets = [f"- {_snippet(h['text'])}" for h in hits[:4]]
steps = {
"en": [
"• Step 1: Check eligibility & gather required documents.",
"• Step 2: Confirm fees & payment options.",
"• Step 3: Apply online or at the indicated office.",
"• Step 4: Keep reference/receipt; track processing time.",
],
"fr": [
"• Étape 1 : Vérifiez l’éligibilité et rassemblez les documents requis.",
"• Étape 2 : Confirmez les frais et les moyens de paiement.",
"• Étape 3 : Déposez la demande en ligne ou au bureau indiqué.",
"• Étape 4 : Conservez le reçu/la référence et suivez le délai de traitement.",
],
"mfe": [
"• Step 1: Get dokiman neseser ek verifie si to elegib.",
"• Step 2: Konfirm fre ek manyer peyman.",
"• Step 3: Fer demand online ouswa dan biro ki indike.",
"• Step 4: Gard referans/reso; swiv letan tretman.",
],
}[normalize_lang(lang)]
return (
"**[Extractive]**\n\n"
f"**{L(lang, 'intro_ok')}**\n\n"
f"**Q:** {user_query}\n\n"
f"**Key information:**\n" + "\n".join(bullets) + "\n\n"
f"**Suggested steps:**\n" + "\n".join(steps)
)
def _lang_name(code: str) -> str:
return {"en": "English", "fr": "French", "mfe": "Kreol Morisien"}.get(code, "English")
# --- Topic routing -------------------------------------------------------------
_TOPIC_MAP = {
"passport": {
"file_hints": ["passport_renewal", "passport"],
"word_hints": ["passport", "passeport", "paspor", "renew", "renouvel"],
"forbid_words": ["business", "cbrd", "brn", "driving", "licence", "license", "civil status"],
},
"driving": {
"file_hints": ["driving_licence", "driving_license"],
"word_hints": ["driving", "licence", "license", "permit", "idp", "pf-77"],
"forbid_words": ["passport", "cbrd", "brn", "civil status"],
},
"civil": {
"file_hints": ["birth_marriage_certificate", "civil_status"],
"word_hints": ["birth", "naissance", "nesans", "marriage", "mariage", "maryaz", "certificate", "extract"],
"forbid_words": ["passport", "driving", "cbrd", "brn"],
},
"business": {
"file_hints": ["business_registration_cbrd", "cbrd"],
"word_hints": ["business", "brn", "cbrd", "register", "trade fee"],
"forbid_words": ["passport", "driving", "civil status"],
},
}
def _guess_topic(query: str) -> str:
q = (query or "").lower()
if any(w in q for w in _TOPIC_MAP["passport"]["word_hints"]):
return "passport"
if any(w in q for w in _TOPIC_MAP["driving"]["word_hints"]):
return "driving"
if any(w in q for w in _TOPIC_MAP["civil"]["word_hints"]):
return "civil"
if any(w in q for w in _TOPIC_MAP["business"]["word_hints"]):
return "business"
return "" # unknown → no routing
def _hit_file(h: Dict) -> str:
# Try several common fields for filepath
return (
h.get("file")
or h.get("source")
or (h.get("meta") or {}).get("file")
or ""
).lower()
def _filter_hits(hits: List[Dict], query: str, keep: int = 4) -> List[Dict]:
"""
Prefer non-placeholder + topic-consistent chunks.
- 1) Drop placeholders
- 2) If topic known: score by filename hits + keyword overlap
- 3) Return top 'keep' items
"""
if not hits:
return []
# 1) remove placeholders
pool = [
h for h in hits
if "placeholder" not in h["text"].lower() and "disclaimer" not in h["text"].lower()
] or hits
topic = _guess_topic(query)
if not topic:
return pool[:keep]
hints = _TOPIC_MAP[topic]
file_hints = hints["file_hints"]
word_hints = set(hints["word_hints"])
forbid = set(hints["forbid_words"])
def score(h: Dict) -> float:
s = 0.0
f = _hit_file(h)
t = h["text"].lower()
# filename boosts
if any(k in f for k in file_hints):
s += 2.0
# keyword overlap boosts
s += sum(1.0 for w in word_hints if w in t)
# forbid words penalty
s -= sum(1.5 for w in forbid if w in t or w in f)
return s
scored = sorted(pool, key=score, reverse=True)
return scored[:keep]
# --- Prompt build & cleaning ---------------------------------------------------
_ECHO_PATTERNS = [
r"^\s*Instruction.*$", r"^\s*Context:.*$", r"^\s*Question:.*$", r"^\s*Answer.*$",
r"^\s*\[Instructions?\].*$", r"^\s*Be concise.*$", r"^\s*Do not invent.*$",
r"^\s*(en|fr|mfe)\s*$",
]
def _clean_generated(text: str) -> str:
lines = [ln.strip() for ln in text.strip().splitlines()]
out = []
for ln in lines:
if any(re.match(pat, ln, flags=re.IGNORECASE) for pat in _ECHO_PATTERNS):
continue
out.append(ln)
cleaned = "\n".join(out).strip()
cleaned = re.sub(r"\n{3,}", "\n\n", cleaned)
return cleaned
def _is_echo_or_too_short_or_offtopic(ans: str, question: str, topic: str) -> bool:
a = re.sub(r"\W+", " ", (ans or "").lower()).strip()
q = re.sub(r"\W+", " ", (question or "").lower()).strip()
if len(a) < 60:
return True
if q and (a.startswith(q) or q in a[: max(80, len(q) + 10)]):
return True
# crude off-topic guard
if topic == "passport" and ("business" in a or "cbrd" in a or "brn" in a):
return True
if topic == "driving" and ("passport" in a or "cbrd" in a or "brn" in a or "civil status" in a):
return True
if topic == "civil" and ("passport" in a or "driving" in a or "cbrd" in a or "brn" in a):
return True
if topic == "business" and ("passport" in a or "driving" in a or "civil status" in a):
return True
return False
def _build_grounded_prompt(question: str, lang: str, hits: List[Dict]) -> str:
lang = normalize_lang(lang)
lang_readable = _lang_name(lang)
topic = _guess_topic(question)
# Strong guardrails in the instruction: stay on topic, bullets only
if lang == "fr":
instruction = (
"Tu es le Copilote Gouvernemental de Maurice. Réponds UNIQUEMENT à partir du contexte. "
"Reste sur le SUJET demandé et ignore les autres documents. Ne répète pas la question. "
"Écris 6–10 puces courtes couvrant: Documents requis, Frais, Où postuler, Délai, Étapes. "
"Si une info manque, dis-le. Pas d'autres sections."
)
elif lang == "mfe":
instruction = (
"To enn Copilot Gouv Moris. Servi ZIS konteks. Reste lor SUZET ki finn demande, "
"ignorar lezot dokiman. Pa repete kestyon. Ekri 6–10 pwin kout: Dokiman, Fre, Kot pou al, "
"Letan tretman, Steps. Si info manke, dir li. Pa azout lezot seksion."
)
else:
instruction = (
"You are the Mauritius Government Copilot. Use ONLY the context. Stay strictly on the "
"REQUESTED TOPIC and ignore other documents. Do NOT repeat the question. Write 6–10 short "
"bullets covering: Required documents, Fees, Where to apply, Processing time, Steps. "
"If something is missing, say so. No extra sections."
)
# Add an explicit topic hint to the instruction (helps FLAN stay on track)
if topic:
instruction += f" Topic: {topic}."
ctx_lines = [f"{i+1}) {_snippet(h['text'])}" for i, h in enumerate(hits)]
ctx_block = "\n".join(ctx_lines) if ctx_lines else "(none)"
# Prime with leading dash to bias bullet style
prompt = (
f"Instruction ({lang_readable}): {instruction}\n\n"
f"Context:\n{ctx_block}\n\n"
f"Question: {question}\n\n"
f"Answer ({lang_readable}):\n- "
)
return prompt
# --- Main entry ----------------------------------------------------------------
def synthesize_with_evo(
user_query: str,
lang: str,
hits: List[Dict],
mode: str = "extractive",
max_new_tokens: int = 192,
temperature: float = 0.0,
) -> str:
lang = normalize_lang(lang)
if not hits:
return _extractive_answer(user_query, lang, hits)
# Route/filter hits to keep only on-topic, high-signal chunks
chosen = _filter_hits(hits, user_query, keep=4)
if mode != "generative" or _GENERATOR is None:
return _extractive_answer(user_query, lang, chosen)
prompt = _build_grounded_prompt(user_query, lang, chosen)
try:
text = _GENERATOR.generate(
prompt,
max_new_tokens=int(max_new_tokens),
temperature=float(temperature),
)
text = _clean_generated(text)
topic = _guess_topic(user_query)
if _is_echo_or_too_short_or_offtopic(text, user_query, topic):
return _extractive_answer(user_query, lang, chosen)
return "**[Generative]**\n\n" + text
except Exception:
return _extractive_answer(user_query, lang, chosen)
|