HemanM commited on
Commit
b7222e2
·
verified ·
1 Parent(s): df2599d

Update evo_plugin_example.py

Browse files
Files changed (1) hide show
  1. evo_plugin_example.py +7 -31
evo_plugin_example.py CHANGED
@@ -1,29 +1,12 @@
1
- """
2
- evo_plugin_example.py
3
- Step 8: Example text generator plugin (for immediate testing).
4
- (Objective)
5
- - Provides the same interface your real Evo plugin will expose.
6
- - Uses a tiny HF model (distilgpt2) so you can test generative mode now.
7
- - Replace this later with `evo_plugin.py` wrapping your EvoDecoder/Evo QA.
8
-
9
- Real Evo instructions:
10
- - Create a file `evo_plugin.py` with a `load_model()` that returns an object
11
- exposing `generate(prompt: str, max_new_tokens: int, temperature: float) -> str`.
12
- - The app will auto-prefer `evo_plugin.py` if it exists.
13
- """
14
-
15
  import torch
16
- from transformers import AutoTokenizer, AutoModelForCausalLM
17
 
18
-
19
- class _HFGenerator:
20
- def __init__(self, model_name: str = "distilgpt2"):
21
  self.device = torch.device("cpu")
22
  self.tok = AutoTokenizer.from_pretrained(model_name)
23
- self.model = AutoModelForCausalLM.from_pretrained(model_name).to(self.device)
24
- # GPT-2 models have no pad token; set to eos to avoid warnings
25
- if self.tok.pad_token_id is None and self.tok.eos_token_id is not None:
26
- self.tok.pad_token_id = self.tok.eos_token_id
27
 
28
  @torch.no_grad()
29
  def generate(self, prompt: str, max_new_tokens: int = 200, temperature: float = 0.4) -> str:
@@ -34,15 +17,8 @@ class _HFGenerator:
34
  do_sample=temperature > 0.0,
35
  temperature=float(max(0.01, temperature)),
36
  top_p=0.95,
37
- pad_token_id=self.tok.pad_token_id,
38
  )
39
- text = self.tok.decode(out[0], skip_special_tokens=True)
40
- # Return only the completion after the prompt to reduce echo
41
- return text[len(prompt):].strip()
42
-
43
 
44
  def load_model():
45
- """
46
- (Objective) Entry-point used by evo_inference.py.
47
- """
48
- return _HFGenerator()
 
1
+ # evo_plugin_example.py — FLAN-T5 stand-in (better instruction following)
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import torch
3
+ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
4
 
5
+ class _HFSeq2SeqGenerator:
6
+ def __init__(self, model_name: str = "google/flan-t5-small"):
 
7
  self.device = torch.device("cpu")
8
  self.tok = AutoTokenizer.from_pretrained(model_name)
9
+ self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(self.device).eval()
 
 
 
10
 
11
  @torch.no_grad()
12
  def generate(self, prompt: str, max_new_tokens: int = 200, temperature: float = 0.4) -> str:
 
17
  do_sample=temperature > 0.0,
18
  temperature=float(max(0.01, temperature)),
19
  top_p=0.95,
 
20
  )
21
+ return self.tok.decode(out[0], skip_special_tokens=True).strip()
 
 
 
22
 
23
  def load_model():
24
+ return _HFSeq2SeqGenerator()