""" evo_plugin_example.py Step 8: Example text generator plugin (for immediate testing). (Objective) - Provides the same interface your real Evo plugin will expose. - Uses a tiny HF model (distilgpt2) so you can test generative mode now. - Replace this later with `evo_plugin.py` wrapping your EvoDecoder/Evo QA. Real Evo instructions: - Create a file `evo_plugin.py` with a `load_model()` that returns an object exposing `generate(prompt: str, max_new_tokens: int, temperature: float) -> str`. - The app will auto-prefer `evo_plugin.py` if it exists. """ import torch from transformers import AutoTokenizer, AutoModelForCausalLM class _HFGenerator: def __init__(self, model_name: str = "distilgpt2"): self.device = torch.device("cpu") self.tok = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name).to(self.device) # GPT-2 models have no pad token; set to eos to avoid warnings if self.tok.pad_token_id is None and self.tok.eos_token_id is not None: self.tok.pad_token_id = self.tok.eos_token_id @torch.no_grad() def generate(self, prompt: str, max_new_tokens: int = 200, temperature: float = 0.4) -> str: inputs = self.tok(prompt, return_tensors="pt").to(self.device) out = self.model.generate( **inputs, max_new_tokens=int(max_new_tokens), do_sample=temperature > 0.0, temperature=float(max(0.01, temperature)), top_p=0.95, pad_token_id=self.tok.pad_token_id, ) text = self.tok.decode(out[0], skip_special_tokens=True) # Return only the completion after the prompt to reduce echo return text[len(prompt):].strip() def load_model(): """ (Objective) Entry-point used by evo_inference.py. """ return _HFGenerator()