""" evo_inference.py — Step 8 Adds a GENERATIVE path using a small plugin (FLAN-T5 stand-in) while keeping the old EXTRACTIVE fallback (bullet points) if generation isn't available. How it works: - We try to import your real evo plugin (evo_plugin.py). If not found, we load evo_plugin_example.py instead. If both fail, we stay in extractive mode. - synthesize_with_evo(...) now accepts mode/temp/max_tokens from the UI. """ from typing import List, Dict from utils_lang import L, normalize_lang # Try to load your real Evo plugin first; else use the example; else None. _GENERATOR = None try: from evo_plugin import load_model as _load_real # <- your future file (optional) _GENERATOR = _load_real() except Exception: try: from evo_plugin_example import load_model as _load_example _GENERATOR = _load_example() except Exception: _GENERATOR = None # no generator available MAX_SNIPPET_CHARS = 400 def _snippet(text: str) -> str: text = " ".join(text.split()) return text[:MAX_SNIPPET_CHARS] + ("..." if len(text) > MAX_SNIPPET_CHARS else "") def _extractive_answer(user_query: str, lang: str, hits: List[Dict]) -> str: """Old safe mode: show top snippets + standard steps.""" if not hits: return L(lang, "intro_err") bullets = [f"- {_snippet(h['text'])}" for h in hits[:4]] steps = { "en": [ "• Step 1: Check eligibility & gather required documents.", "• Step 2: Confirm fees & payment options.", "• Step 3: Apply online or at the indicated office.", "• Step 4: Keep reference/receipt; track processing time.", ], "fr": [ "• Étape 1 : Vérifiez l’éligibilité et rassemblez les documents requis.", "• Étape 2 : Confirmez les frais et les moyens de paiement.", "• Étape 3 : Déposez la demande en ligne ou au bureau indiqué.", "• Étape 4 : Conservez le reçu/la référence et suivez le délai de traitement.", ], "mfe": [ "• Step 1: Get dokiman neseser ek verifie si to elegib.", "• Step 2: Konfirm fre ek manyer peyman.", "• Step 3: Fer demand online ouswa dan biro ki indike.", "• Step 4: Gard referans/reso; swiv letan tretman.", ], }[normalize_lang(lang)] return ( f"**{L(lang, 'intro_ok')}**\n\n" f"**Q:** {user_query}\n\n" f"**Key information:**\n" + "\n".join(bullets) + "\n\n" f"**Suggested steps:**\n" + "\n".join(steps) ) def _build_grounded_prompt(question: str, lang: str, hits: List[Dict]) -> str: """Create a compact prompt that includes the question + top retrieved snippets.""" lang = normalize_lang(lang) if lang == "fr": system = ("Tu es le Copilote Gouvernemental de Maurice. Réponds clairement, étape " "par étape, en te basant UNIQUEMENT sur le contexte. Inclure: documents requis, " "frais, où postuler, délais. Dire si une info manque.") elif lang == "mfe": system = ("To enn Copilot Gouv Moris. Reponn kler ek pas-a-pas, servi zis konteks ki donn. " "Met: ki dokiman bizin, fre, kot pou al, delai. Dir si info manke.") else: system = ("You are the Mauritius Government Copilot. Answer clearly and step-by-step using " "ONLY the provided context. Include: required documents, fees, where to apply, " "processing time. State if anything is missing.") ctx = "\n".join([f"[Context #{i+1}] {_snippet(h['text'])}" for i, h in enumerate(hits[:6])]) or "[Context] (none)" return ( f"{system}\n\n[Question]\n{question}\n\n{ctx}\n\n" f"[Instructions]\n- Be concise (6–10 lines)\n- Use bullet steps\n" f"- Do not invent links/fees\n- Answer in language code: {lang}\n[Answer]\n" ) def synthesize_with_evo( user_query: str, lang: str, hits: List[Dict], mode: str = "extractive", max_new_tokens: int = 192, temperature: float = 0.4, ) -> str: """If mode=='generative' and a generator exists, generate; else use extractive fallback.""" lang = normalize_lang(lang) if mode != "generative" or _GENERATOR is None: return _extractive_answer(user_query, lang, hits) prompt = _build_grounded_prompt(user_query, lang, hits) try: text = _GENERATOR.generate(prompt, max_new_tokens=int(max_new_tokens), temperature=float(temperature)) return text.strip() or _extractive_answer(user_query, lang, hits) except Exception: return _extractive_answer(user_query, lang, hits)