""" evo_inference.py — FLAN-optimized + topic router + anti-echo/off-topic - Routes queries to the right topic (passport / driving / civil status / business) - Prefers chunks whose filename/text match the topic; filters placeholders - FLAN-friendly prompt; cleans prompt-echo; falls back if echo/too short/off-topic - Labels outputs: [Generative] / [Extractive] """ from typing import List, Dict import re from utils_lang import L, normalize_lang # Try to load your real Evo plugin first; else use the example; else None. _GENERATOR = None try: from evo_plugin import load_model as _load_real _GENERATOR = _load_real() except Exception: try: from evo_plugin_example import load_model as _load_example _GENERATOR = _load_example() except Exception: _GENERATOR = None # Keep snippets short so FLAN-T5 stays within encoder limit (512) MAX_SNIPPET_CHARS = 220 def _snippet(text: str) -> str: text = " ".join(text.split()) return text[:MAX_SNIPPET_CHARS] + ("..." if len(text) > MAX_SNIPPET_CHARS else "") def _extractive_answer(user_query: str, lang: str, hits: List[Dict]) -> str: if not hits: return "**[Extractive]**\n\n" + L(lang, "intro_err") bullets = [f"- {_snippet(h['text'])}" for h in hits[:4]] steps = { "en": [ "• Step 1: Check eligibility & gather required documents.", "• Step 2: Confirm fees & payment options.", "• Step 3: Apply online or at the indicated office.", "• Step 4: Keep reference/receipt; track processing time.", ], "fr": [ "• Étape 1 : Vérifiez l’éligibilité et rassemblez les documents requis.", "• Étape 2 : Confirmez les frais et les moyens de paiement.", "• Étape 3 : Déposez la demande en ligne ou au bureau indiqué.", "• Étape 4 : Conservez le reçu/la référence et suivez le délai de traitement.", ], "mfe": [ "• Step 1: Get dokiman neseser ek verifie si to elegib.", "• Step 2: Konfirm fre ek manyer peyman.", "• Step 3: Fer demand online ouswa dan biro ki indike.", "• Step 4: Gard referans/reso; swiv letan tretman.", ], }[normalize_lang(lang)] return ( "**[Extractive]**\n\n" f"**{L(lang, 'intro_ok')}**\n\n" f"**Q:** {user_query}\n\n" f"**Key information:**\n" + "\n".join(bullets) + "\n\n" f"**Suggested steps:**\n" + "\n".join(steps) ) def _lang_name(code: str) -> str: return {"en": "English", "fr": "French", "mfe": "Kreol Morisien"}.get(code, "English") # --- Topic routing ------------------------------------------------------------- _TOPIC_MAP = { "passport": { "file_hints": ["passport_renewal", "passport"], "word_hints": ["passport", "passeport", "paspor", "renew", "renouvel"], "forbid_words": ["business", "cbrd", "brn", "driving", "licence", "license", "civil status"], }, "driving": { "file_hints": ["driving_licence", "driving_license"], "word_hints": ["driving", "licence", "license", "permit", "idp", "pf-77"], "forbid_words": ["passport", "cbrd", "brn", "civil status"], }, "civil": { "file_hints": ["birth_marriage_certificate", "civil_status"], "word_hints": ["birth", "naissance", "nesans", "marriage", "mariage", "maryaz", "certificate", "extract"], "forbid_words": ["passport", "driving", "cbrd", "brn"], }, "business": { "file_hints": ["business_registration_cbrd", "cbrd"], "word_hints": ["business", "brn", "cbrd", "register", "trade fee"], "forbid_words": ["passport", "driving", "civil status"], }, } def _guess_topic(query: str) -> str: q = (query or "").lower() if any(w in q for w in _TOPIC_MAP["passport"]["word_hints"]): return "passport" if any(w in q for w in _TOPIC_MAP["driving"]["word_hints"]): return "driving" if any(w in q for w in _TOPIC_MAP["civil"]["word_hints"]): return "civil" if any(w in q for w in _TOPIC_MAP["business"]["word_hints"]): return "business" return "" # unknown → no routing def _hit_file(h: Dict) -> str: # Try several common fields for filepath return ( h.get("file") or h.get("source") or (h.get("meta") or {}).get("file") or "" ).lower() def _filter_hits(hits: List[Dict], query: str, keep: int = 4) -> List[Dict]: """ Prefer non-placeholder + topic-consistent chunks. - 1) Drop placeholders - 2) If topic known: score by filename hits + keyword overlap - 3) Return top 'keep' items """ if not hits: return [] # 1) remove placeholders pool = [ h for h in hits if "placeholder" not in h["text"].lower() and "disclaimer" not in h["text"].lower() ] or hits topic = _guess_topic(query) if not topic: return pool[:keep] hints = _TOPIC_MAP[topic] file_hints = hints["file_hints"] word_hints = set(hints["word_hints"]) forbid = set(hints["forbid_words"]) def score(h: Dict) -> float: s = 0.0 f = _hit_file(h) t = h["text"].lower() # filename boosts if any(k in f for k in file_hints): s += 2.0 # keyword overlap boosts s += sum(1.0 for w in word_hints if w in t) # forbid words penalty s -= sum(1.5 for w in forbid if w in t or w in f) return s scored = sorted(pool, key=score, reverse=True) return scored[:keep] # --- Prompt build & cleaning --------------------------------------------------- _ECHO_PATTERNS = [ r"^\s*Instruction.*$", r"^\s*Context:.*$", r"^\s*Question:.*$", r"^\s*Answer.*$", r"^\s*\[Instructions?\].*$", r"^\s*Be concise.*$", r"^\s*Do not invent.*$", r"^\s*(en|fr|mfe)\s*$", ] def _clean_generated(text: str) -> str: lines = [ln.strip() for ln in text.strip().splitlines()] out = [] for ln in lines: if any(re.match(pat, ln, flags=re.IGNORECASE) for pat in _ECHO_PATTERNS): continue out.append(ln) cleaned = "\n".join(out).strip() cleaned = re.sub(r"\n{3,}", "\n\n", cleaned) return cleaned def _is_echo_or_too_short_or_offtopic(ans: str, question: str, topic: str) -> bool: a = re.sub(r"\W+", " ", (ans or "").lower()).strip() q = re.sub(r"\W+", " ", (question or "").lower()).strip() if len(a) < 60: return True if q and (a.startswith(q) or q in a[: max(80, len(q) + 10)]): return True # crude off-topic guard if topic == "passport" and ("business" in a or "cbrd" in a or "brn" in a): return True if topic == "driving" and ("passport" in a or "cbrd" in a or "brn" in a or "civil status" in a): return True if topic == "civil" and ("passport" in a or "driving" in a or "cbrd" in a or "brn" in a): return True if topic == "business" and ("passport" in a or "driving" in a or "civil status" in a): return True return False def _build_grounded_prompt(question: str, lang: str, hits: List[Dict]) -> str: lang = normalize_lang(lang) lang_readable = _lang_name(lang) topic = _guess_topic(question) # Strong guardrails in the instruction: stay on topic, bullets only if lang == "fr": instruction = ( "Tu es le Copilote Gouvernemental de Maurice. Réponds UNIQUEMENT à partir du contexte. " "Reste sur le SUJET demandé et ignore les autres documents. Ne répète pas la question. " "Écris 6–10 puces courtes couvrant: Documents requis, Frais, Où postuler, Délai, Étapes. " "Si une info manque, dis-le. Pas d'autres sections." ) elif lang == "mfe": instruction = ( "To enn Copilot Gouv Moris. Servi ZIS konteks. Reste lor SUZET ki finn demande, " "ignorar lezot dokiman. Pa repete kestyon. Ekri 6–10 pwin kout: Dokiman, Fre, Kot pou al, " "Letan tretman, Steps. Si info manke, dir li. Pa azout lezot seksion." ) else: instruction = ( "You are the Mauritius Government Copilot. Use ONLY the context. Stay strictly on the " "REQUESTED TOPIC and ignore other documents. Do NOT repeat the question. Write 6–10 short " "bullets covering: Required documents, Fees, Where to apply, Processing time, Steps. " "If something is missing, say so. No extra sections." ) # Add an explicit topic hint to the instruction (helps FLAN stay on track) if topic: instruction += f" Topic: {topic}." ctx_lines = [f"{i+1}) {_snippet(h['text'])}" for i, h in enumerate(hits)] ctx_block = "\n".join(ctx_lines) if ctx_lines else "(none)" # Prime with leading dash to bias bullet style prompt = ( f"Instruction ({lang_readable}): {instruction}\n\n" f"Context:\n{ctx_block}\n\n" f"Question: {question}\n\n" f"Answer ({lang_readable}):\n- " ) return prompt # --- Main entry ---------------------------------------------------------------- def synthesize_with_evo( user_query: str, lang: str, hits: List[Dict], mode: str = "extractive", max_new_tokens: int = 192, temperature: float = 0.0, ) -> str: lang = normalize_lang(lang) if not hits: return _extractive_answer(user_query, lang, hits) # Route/filter hits to keep only on-topic, high-signal chunks chosen = _filter_hits(hits, user_query, keep=4) if mode != "generative" or _GENERATOR is None: return _extractive_answer(user_query, lang, chosen) prompt = _build_grounded_prompt(user_query, lang, chosen) try: text = _GENERATOR.generate( prompt, max_new_tokens=int(max_new_tokens), temperature=float(temperature), ) text = _clean_generated(text) topic = _guess_topic(user_query) if _is_echo_or_too_short_or_offtopic(text, user_query, topic): return _extractive_answer(user_query, lang, chosen) return "**[Generative]**\n\n" + text except Exception: return _extractive_answer(user_query, lang, chosen)