# evo_plugin_example.py — FLAN-T5 stand-in (truncation + clean kwargs) import torch from transformers import AutoTokenizer, AutoModelForSeq2SeqLM class _HFSeq2SeqGenerator: def __init__(self, model_name: str = "google/flan-t5-small"): self.device = torch.device("cpu") self.tok = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(self.device).eval() # FLAN-T5 encoder max length ml = getattr(self.tok, "model_max_length", 512) or 512 # Some tokenizers report a huge sentinel value; clamp to 512 for T5-small self.max_src_len = min(512, int(ml if ml < 10000 else 512)) @torch.no_grad() def generate(self, prompt: str, max_new_tokens: int = 200, temperature: float = 0.0) -> str: # TRUNCATE input to model's max encoder length inputs = self.tok( prompt, return_tensors="pt", truncation=True, max_length=self.max_src_len, ).to(self.device) do_sample = float(temperature) > 0.0 gen_kwargs = dict( max_new_tokens=int(max_new_tokens), num_beams=4, # stable, less echo early_stopping=True, no_repeat_ngram_size=3, repetition_penalty=1.1, length_penalty=0.1, ) # Only include sampling args when sampling is ON (silences warnings) if do_sample: gen_kwargs.update( do_sample=True, temperature=float(max(0.01, temperature)), top_p=0.9, ) # Encourage non-trivial length without tying to input length gen_kwargs["min_new_tokens"] = max(48, int(0.4 * max_new_tokens)) out = self.model.generate(**inputs, **gen_kwargs) return self.tok.decode(out[0], skip_special_tokens=True).strip() def load_model(): return _HFSeq2SeqGenerator()