Spaces:
Sleeping
Sleeping
File size: 14,607 Bytes
0c388fc e6e291b 0c388fc e6e291b 0c388fc e6e291b 0c388fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
# app.py
import math, json, random, time, threading, io, os
from dataclasses import dataclass, asdict
from typing import List, Tuple, Dict, Any, Optional
import numpy as np
import plotly.graph_objs as go
import gradio as gr
# =========================
# UX THEME & STYLES
# =========================
CUSTOM_CSS = """
:root {
--radius-2xl: 20px;
}
.gradio-container {max-width: 1400px !important}
#header-card {border-radius: var(--radius-2xl); box-shadow: 0 6px 24px rgba(0,0,0,0.08)}
#viz-card, #right-card, #table-card {border-radius: var(--radius-2xl); box-shadow: 0 6px 24px rgba(0,0,0,0.06)}
#stats {display:flex; gap:16px; flex-wrap:wrap}
.stat {flex:1; min-width:180px; background:#0b1220; color:white; border-radius:16px; padding:14px 16px}
.stat .k {font-size:14px; opacity:0.8}
.stat .v {font-size:22px; font-weight:700}
.gr-button {border-radius:14px}
"""
# =========================
# GENOME & EVOLUTION CORE
# =========================
@dataclass
class Genome:
d_model: int
n_layers: int
n_heads: int
ffn_mult: float
memory_tokens: int
dropout: float
species: int = 0
fitness: float = float("inf")
def vector(self) -> np.ndarray:
# Normalized structural vector (0..1)
return np.array([
self.d_model / 1024.0,
self.n_layers / 24.0,
self.n_heads / 32.0,
self.ffn_mult / 8.0,
self.memory_tokens / 64.0,
self.dropout / 0.5
], dtype=np.float32)
def random_genome(rng: random.Random) -> Genome:
return Genome(
d_model=rng.choice([256, 384, 512, 640]),
n_layers=rng.choice([4, 6, 8, 10, 12]),
n_heads=rng.choice([4, 6, 8, 10, 12]),
ffn_mult=rng.choice([2.0, 3.0, 4.0, 6.0]),
memory_tokens=rng.choice([0, 4, 8, 16]),
dropout=rng.choice([0.0, 0.05, 0.1, 0.15]),
species=rng.randrange(5)
)
def mutate(g: Genome, rng: random.Random, rate: float) -> Genome:
g = Genome(**asdict(g))
if rng.random() < rate: g.d_model = rng.choice([256, 384, 512, 640])
if rng.random() < rate: g.n_layers = rng.choice([4, 6, 8, 10, 12])
if rng.random() < rate: g.n_heads = rng.choice([4, 6, 8, 10, 12])
if rng.random() < rate: g.ffn_mult = rng.choice([2.0, 3.0, 4.0, 6.0])
if rng.random() < rate: g.memory_tokens = rng.choice([0, 4, 8, 16])
if rng.random() < rate: g.dropout = rng.choice([0.0, 0.05, 0.1, 0.15])
if rng.random() < rate * 0.5: g.species = rng.randrange(5)
g.fitness = float("inf")
return g
def crossover(a: Genome, b: Genome, rng: random.Random) -> Genome:
return Genome(
d_model = a.d_model if rng.random()<0.5 else b.d_model,
n_layers = a.n_layers if rng.random()<0.5 else b.n_layers,
n_heads = a.n_heads if rng.random()<0.5 else b.n_heads,
ffn_mult = a.ffn_mult if rng.random()<0.5 else b.ffn_mult,
memory_tokens = a.memory_tokens if rng.random()<0.5 else b.memory_tokens,
dropout = a.dropout if rng.random()<0.5 else b.dropout,
species = a.species if rng.random()<0.5 else b.species,
fitness = float("inf")
)
# =========================
# FITNESS HOOK (Phase 1: fast surrogate)
# Swap this later for real PIQA/HellaSwag evaluation
# =========================
def rastrigin(x: np.ndarray) -> float:
A, n = 10.0, x.shape[0]
return A * n + np.sum(x**2 - A * np.cos(2 * math.pi * x))
def fitness_hook(genome: Genome, dataset: str, explore: float) -> float:
"""
Phase 1 (demo, fast):
- Build vector v in [-1,1] from genome params and score via Rastrigin.
- Add small parsimony penalty and exploration noise.
Phase 2 (real):
- Replace with tiny train/eval steps on chosen dataset (PIQA/HellaSwag/WikiText-ppl).
"""
v = genome.vector() * 2 - 1 # [-1,1]
base = rastrigin(v)
parsimony = 0.001 * (genome.d_model + 50*genome.n_layers + 20*genome.n_heads + 100*genome.memory_tokens)
noise = np.random.normal(scale=0.05 * max(0.0, min(1.0, explore)))
return float(base + parsimony + noise)
# =========================
# PROJECTION & VIZ
# =========================
def sphere_project(points: np.ndarray) -> np.ndarray:
# Fixed random projection 6D -> 3D then normalize to unit sphere
rng = np.random.RandomState(42)
W = rng.normal(size=(points.shape[1], 3)).astype(np.float32)
Y = points @ W
norms = np.linalg.norm(Y, axis=1, keepdims=True) + 1e-8
return Y / norms
def make_sphere_figure(points3d: np.ndarray, genomes: List[Genome], gen_idx: int) -> go.Figure:
species = np.array([g.species for g in genomes])
tooltip = [
json.dumps({k:v for k,v in asdict(g).items() if k!="fitness"}) + f"\nfitness={g.fitness:.3f}"
for g in genomes
]
scatter = go.Scatter3d(
x=points3d[:,0], y=points3d[:,1], z=points3d[:,2],
mode='markers',
marker=dict(size=6, color=species, opacity=0.9),
text=tooltip, hoverinfo='text'
)
# Sphere mesh
u = np.linspace(0, 2*np.pi, 48)
v = np.linspace(0, np.pi, 24)
xs = np.outer(np.cos(u), np.sin(v))
ys = np.outer(np.sin(u), np.sin(v))
zs = np.outer(np.ones_like(u), np.cos(v))
sphere = go.Surface(x=xs, y=ys, z=zs, opacity=0.15, showscale=False)
layout = go.Layout(
title=f"Evo Sphere — Generation {gen_idx}",
scene=dict(xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False)),
margin=dict(l=0, r=0, t=40, b=0),
showlegend=False
)
return go.Figure(data=[sphere, scatter], layout=layout)
def make_history_figure(history: List[Tuple[int,float]]) -> go.Figure:
xs = [h[0] for h in history]
ys = [h[1] for h in history]
fig = go.Figure(data=[go.Scatter(x=xs, y=ys, mode="lines+markers")])
fig.update_layout(title="Best Fitness per Generation", xaxis_title="Generation",
yaxis_title="Fitness (lower is better)",
margin=dict(l=30,r=10,t=40,b=30))
return fig
def approx_params(g: Genome) -> int:
# Very rough estimate ignoring embeddings/vocab:
# per-layer ~ (4 + 2*ffn_mult) * d_model^2
per_layer = (4.0 + 2.0 * float(g.ffn_mult)) * (g.d_model ** 2)
total = per_layer * g.n_layers
# tiny bump for memory tokens pathways (illustrative only)
total += 1000 * g.memory_tokens
return int(total)
# =========================
# ORCHESTRATOR
# =========================
class EvoRunner:
def __init__(self):
self.lock = threading.Lock()
self.running = False
self.stop_flag = False
self.state: Dict[str, Any] = {}
def run(self, dataset, pop_size, generations, mutation_rate, explore, exploit, seed, pace_ms):
rng = random.Random(int(seed))
self.stop_flag = False
self.running = True
pop: List[Genome] = [random_genome(rng) for _ in range(pop_size)]
# initial eval
for g in pop:
g.fitness = fitness_hook(g, dataset, explore)
history: List[Tuple[int,float]] = []
best_overall: Optional[Genome] = None
for gen in range(1, generations+1):
if self.stop_flag: break
# Selection: tournament size depends on exploitation
k = max(2, int(2 + exploit * 5))
parents = []
for _ in range(pop_size):
sample = rng.sample(pop, k=k)
parents.append(min(sample, key=lambda x: x.fitness))
# Reproduce
children = []
for i in range(0, pop_size, 2):
a = parents[i]
b = parents[(i+1) % pop_size]
child1 = mutate(crossover(a,b,rng), rng, mutation_rate)
child2 = mutate(crossover(b,a,rng), rng, mutation_rate)
children.extend([child1, child2])
children = children[:pop_size]
# Evaluate kids
for c in children:
c.fitness = fitness_hook(c, dataset, explore)
# Elitism
elite_n = max(1, pop_size // 10)
elites = sorted(pop, key=lambda x: x.fitness)[:elite_n]
# Next pop
pop = sorted(children, key=lambda x: x.fitness)
pop[-elite_n:] = elites
best = min(pop, key=lambda x: x.fitness)
if best_overall is None or best.fitness < best_overall.fitness:
best_overall = best
history.append((gen, best.fitness))
# Viz snapshot
P = np.stack([g.vector() for g in pop], axis=0)
P3 = sphere_project(P)
sphere_fig = make_sphere_figure(P3, pop, gen)
hist_fig = make_history_figure(history)
top = sorted(pop, key=lambda x: x.fitness)[: min(12, len(pop))]
top_table = [
{
"gen": gen,
"fitness": round(t.fitness, 4),
"d_model": t.d_model,
"layers": t.n_layers,
"heads": t.n_heads,
"ffn_mult": t.ffn_mult,
"mem": t.memory_tokens,
"dropout": t.dropout,
"species": t.species,
"params_approx": approx_params(t)
} for t in top
]
best_card = top_table[0] if len(top_table) else {}
with self.lock:
self.state = {
"sphere": sphere_fig,
"history": hist_fig,
"top": top_table,
"best": best_card,
"gen": gen,
"dataset": dataset
}
time.sleep(max(0.0, pace_ms/1000.0))
self.running = False
def start(self, *args, **kwargs):
if self.running: return
t = threading.Thread(target=self.run, args=args, kwargs=kwargs, daemon=True)
t.start()
def stop(self):
self.stop_flag = True
runner = EvoRunner()
# =========================
# GRADIO UI CALLBACKS
# =========================
def start_evo(dataset, pop, gens, mut, explore, exploit, seed, pace_ms):
runner.start(dataset, int(pop), int(gens), float(mut), float(explore), float(exploit), int(seed), int(pace_ms))
return (gr.update(interactive=False), gr.update(interactive=True))
def stop_evo():
runner.stop()
return (gr.update(interactive=True), gr.update(interactive=False))
def poll_state():
with runner.lock:
s = runner.state.copy()
sphere = s.get("sphere", go.Figure())
history = s.get("history", go.Figure())
best = s.get("best", {})
gen = s.get("gen", 0)
dataset = s.get("dataset", "Demo (Surrogate)")
top = s.get("top", [])
if best:
stats_md = (
f"**Dataset:** {dataset} \n"
f"**Generation:** {gen} \n"
f"**Best fitness:** {best.get('fitness','–')} \n"
f"**Config:** d_model={best.get('d_model')} · layers={best.get('layers')} · "
f"heads={best.get('heads')} · ffn_mult={best.get('ffn_mult')} · mem={best.get('mem')} · "
f"dropout={best.get('dropout')} \n"
f"**~Params (rough):** {best.get('params_approx'):,}"
)
else:
stats_md = "Waiting… click **Start Evolution**."
import pandas as pd
df = pd.DataFrame(top)
return sphere, history, stats_md, df
def export_snapshot():
with runner.lock:
payload = json.dumps(runner.state, default=lambda o: o, indent=2)
path = "evo_snapshot.json"
with open(path, "w", encoding="utf-8") as f:
f.write(payload)
return path
# =========================
# BUILD UI
# =========================
with gr.Blocks(theme=gr.themes.Soft(), css=CUSTOM_CSS) as demo:
with gr.Column(elem_id="header-card"):
gr.Markdown(
"# Evo Playground — Live Evolving Transformer Architectures\n"
"Watch the population **mutate, recombine, and converge** in real time. "
"Choose a dataset and search behavior; the 3D sphere shows the architecture landscape (species = colors)."
)
with gr.Row():
# LEFT: Controls
with gr.Column(scale=1):
with gr.Group():
dataset = gr.Dropdown(
label="Dataset",
choices=["Demo (Surrogate)", "PIQA (Phase 2)", "HellaSwag (Phase 2)", "WikiText Perplexity (Phase 2)"],
value="Demo (Surrogate)",
info="Demo is instant. Phase 2 datasets will do tiny train/eval steps per genome."
)
pop = gr.Slider(8, 80, value=24, step=2, label="Population size")
gens = gr.Slider(5, 200, value=60, step=1, label="Max generations")
mut = gr.Slider(0.05, 0.9, value=0.25, step=0.01, label="Mutation rate")
with gr.Row():
explore = gr.Slider(0.0, 1.0, value=0.35, step=0.05, label="Exploration")
exploit = gr.Slider(0.0, 1.0, value=0.65, step=0.05, label="Exploitation")
seed = gr.Number(value=42, label="Seed", precision=0)
pace = gr.Slider(0, 1000, value=120, step=10, label="Pace (ms between gens)")
with gr.Row():
start = gr.Button("▶ Start Evolution", variant="primary")
stop = gr.Button("⏹ Stop", variant="secondary")
with gr.Group(elem_id="right-card"):
stats_md = gr.Markdown("Waiting…")
export_btn = gr.Button("Export Snapshot (JSON)")
export_file = gr.File(label="Download snapshot", visible=False)
# RIGHT: Viz + Table
with gr.Column(scale=2):
with gr.Group(elem_id="viz-card"):
sphere_plot = gr.Plot(label="Evolution Sphere")
with gr.Group(elem_id="viz-card"):
hist_plot = gr.Plot(label="Best Fitness History")
with gr.Group(elem_id="table-card"):
top_df = gr.Dataframe(label="Top Genomes (live)", wrap=True, interactive=False)
# Wiring
start.click(start_evo, [dataset, pop, gens, mut, explore, exploit, seed, pace], [start, stop])
stop.click(stop_evo, [], [start, stop])
export_btn.click(export_snapshot, [], [export_file])
# Initial paint once when app loads
demo.load(poll_state, None, [sphere_plot, hist_plot, stats_md, top_df])
# Continuous polling (every 0.7s)
poller = gr.Timer(0.7)
poller.tick(poll_state, None, [sphere_plot, hist_plot, stats_md, top_df])
if __name__ == "__main__":
demo.launch()
|