Spaces:
Sleeping
Sleeping
File size: 24,752 Bytes
f8b9865 0c388fc e4791e2 25ccd85 e4791e2 25ccd85 f8b9865 25ccd85 f8b9865 25ccd85 f8b9865 25ccd85 f8b9865 25ccd85 f8b9865 25ccd85 f8b9865 25ccd85 f8b9865 25ccd85 0c388fc f8b9865 0c388fc e4791e2 25ccd85 e4791e2 25ccd85 d4bbba0 f8b9865 0c388fc 25ccd85 f8b9865 25ccd85 f8b9865 25ccd85 f8b9865 25ccd85 f8b9865 25ccd85 f8b9865 25ccd85 f8b9865 25ccd85 f8b9865 25ccd85 f8b9865 25ccd85 d4bbba0 25ccd85 f8b9865 25ccd85 0c388fc 25ccd85 d4bbba0 f8b9865 25ccd85 d4bbba0 f8b9865 25ccd85 d4bbba0 25ccd85 f8b9865 25ccd85 f8b9865 25ccd85 f8b9865 25ccd85 e4791e2 25ccd85 f8b9865 25ccd85 0c388fc f8b9865 25ccd85 0c388fc f8b9865 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 |
# app.py — Enhanced UI + stable backend (idle sphere, Clear, inline Plotly, accuracy)
import math, random, time, threading
from dataclasses import dataclass, asdict
from typing import List, Tuple, Dict, Any, Optional
from functools import lru_cache
import numpy as np
import plotly.graph_objs as go
import plotly.io as pio
import gradio as gr
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from data_utils import load_piqa, load_hellaswag, hash_vectorize
# =========================
# ENHANCED CSS
# =========================
ENHANCED_CSS = """
:root {
--radius: 14px;
--fg: #E5E7EB;
--muted: #94A3B8;
--line: #1f2b36;
--bg: #0F1A24;
--panel-bg: #0c161f;
--accent: #3B82F6;
--accent-hover: #2563EB;
--danger: #EF4444;
}
.gradio-container {
max-width: 1400px !important;
background: var(--bg);
padding: 16px !important;
}
#header {
padding: 16px 0;
margin-bottom: 16px;
border-bottom: 1px solid var(--line);
}
h1, h2, h3, .gr-markdown {
color: var(--fg);
}
.gr-button {
border-radius: 8px;
padding: 8px 16px;
transition: all 0.2s ease;
font-weight: 500 !important;
}
.btn-primary {
background: var(--accent) !important;
border: 1px solid var(--accent) !important;
}
.btn-primary:hover { background: var(--accent-hover) !important; }
.btn-secondary {
background: transparent !important;
border: 1px solid var(--line) !important;
}
.btn-danger {
background: var(--danger) !important;
border: 1px solid var(--danger) !important;
}
.control-group {
border: 1px solid var(--line);
border-radius: var(--radius);
background: var(--panel-bg);
padding: 20px;
margin-bottom: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
}
.panel {
border: 1px solid var(--line);
border-radius: var(--radius);
background: var(--panel-bg);
padding: 20px;
margin-bottom: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
}
.stats-panel {
background: linear-gradient(145deg, #0a121b, #0c161f);
border-left: 3px solid var(--accent);
}
#stats {
color: var(--fg);
line-height: 1.6;
}
#stats strong {
font-weight: 500;
color: var(--accent);
}
.param-slider { margin-bottom: 12px; }
.visualization-container {
display: flex;
flex-direction: column;
gap: 20px;
height: 100%;
}
.viz-panel { flex: 1; min-height: 300px; }
.viz-header {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 12px;
padding-bottom: 8px;
border-bottom: 1px solid var(--line);
}
.viz-title {
font-size: 1.1rem;
font-weight: 500;
color: var(--accent);
}
.gen-counter {
font-size: 0.9rem;
background: rgba(59, 130, 246, 0.15);
padding: 4px 10px;
border-radius: 12px;
}
.slider-info {
display: flex;
justify-content: space-between;
font-size: 0.85rem;
color: var(--muted);
margin-top: 4px;
}
.controls-grid {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 16px;
}
@media (max-width: 1200px) { .controls-grid { grid-template-columns: 1fr; } }
.data-table { max-height: 400px; overflow-y: auto; }
.data-table table {
width: 100%;
border-collapse: collapse;
}
.data-table th {
background: rgba(15, 26, 36, 0.8);
position: sticky;
top: 0;
text-align: left;
padding: 10px 12px;
font-weight: 500;
color: var(--accent);
border-bottom: 1px solid var(--line);
}
.data-table td {
padding: 8px 12px;
border-bottom: 1px solid rgba(31, 43, 54, 0.5);
}
.data-table tr:hover { background: rgba(31, 43, 54, 0.3); }
.action-buttons { display: flex; gap: 12px; margin-top: 20px; }
.footer {
margin-top: 20px;
padding-top: 20px;
border-top: 1px solid var(--line);
font-size: 0.85rem;
color: var(--muted);
text-align: center;
}
"""
# =========================
# GENOME + EVOLUTION CORE
# =========================
@dataclass
class Genome:
d_model: int
n_layers: int
n_heads: int
ffn_mult: float
memory_tokens: int
dropout: float
species: int = 0
fitness: float = float("inf")
acc: Optional[float] = None
def vector(self) -> np.ndarray:
return np.array([
self.d_model / 1024.0,
self.n_layers / 24.0,
self.n_heads / 32.0,
self.ffn_mult / 8.0,
self.memory_tokens / 64.0,
self.dropout / 0.5
], dtype=np.float32)
def random_genome(rng: random.Random) -> Genome:
return Genome(
d_model=rng.choice([256, 384, 512, 640]),
n_layers=rng.choice([4, 6, 8, 10, 12]),
n_heads=rng.choice([4, 6, 8, 10, 12]),
ffn_mult=rng.choice([2.0, 3.0, 4.0, 6.0]),
memory_tokens=rng.choice([0, 4, 8, 16]),
dropout=rng.choice([0.0, 0.05, 0.1, 0.15]),
species=rng.randrange(5)
)
def mutate(g: Genome, rng: random.Random, rate: float) -> Genome:
g = Genome(**asdict(g))
if rng.random() < rate: g.d_model = rng.choice([256, 384, 512, 640])
if rng.random() < rate: g.n_layers = rng.choice([4, 6, 8, 10, 12])
if rng.random() < rate: g.n_heads = rng.choice([4, 6, 8, 10, 12])
if rng.random() < rate: g.ffn_mult = rng.choice([2.0, 3.0, 4.0, 6.0])
if rng.random() < rate: g.memory_tokens = rng.choice([0, 4, 8, 16])
if rng.random() < rate: g.dropout = rng.choice([0.0, 0.05, 0.1, 0.15])
if rng.random() < rate * 0.5: g.species = rng.randrange(5)
g.fitness = float("inf"); g.acc = None
return g
def crossover(a: Genome, b: Genome, rng: random.Random) -> Genome:
return Genome(
d_model = a.d_model if rng.random()<0.5 else b.d_model,
n_layers = a.n_layers if rng.random()<0.5 else b.n_layers,
n_heads = a.n_heads if rng.random()<0.5 else b.n_heads,
ffn_mult = a.ffn_mult if rng.random()<0.5 else b.ffn_mult,
memory_tokens = a.memory_tokens if rng.random()<0.5 else b.memory_tokens,
dropout = a.dropout if rng.random()<0.5 else b.dropout,
species = a.species if rng.random()<0.5 else b.species,
fitness = float("inf"), acc=None
)
# =========================
# PROXY FITNESS
# =========================
def rastrigin(x: np.ndarray) -> float:
A, n = 10.0, x.shape[0]
return A * n + np.sum(x**2 - A * np.cos(2 * math.pi * x))
class TinyMLP(nn.Module):
def __init__(self, in_dim: int, genome: Genome):
super().__init__()
h1 = max(64, int(0.25 * genome.d_model))
h2 = max(32, int(genome.ffn_mult * 32))
self.net = nn.Sequential(
nn.Linear(in_dim, h1), nn.ReLU(),
nn.Linear(h1, h2), nn.ReLU(),
nn.Linear(h2, 1)
)
def forward(self, x): return self.net(x).squeeze(-1)
@lru_cache(maxsize=4)
def _cached_dataset(name: str):
try:
if name.startswith("PIQA"): return load_piqa(subset=800, seed=42)
if name.startswith("HellaSwag"): return load_hellaswag(subset=800, seed=42)
except Exception:
return None
return None
def _train_eval_proxy(genome: Genome, dataset_name: str, explore: float, device: str="cpu"):
data = _cached_dataset(dataset_name)
if data is None:
# Fallback to surrogate so UI still runs
v = genome.vector() * 2 - 1
base = rastrigin(v)
parsimony = 0.001 * (genome.d_model + 50*genome.n_layers + 20*genome.n_heads + 100*genome.memory_tokens)
noise = np.random.normal(scale=0.05 * max(0.0, min(1.0, explore)))
return float(base + parsimony + noise), None
Xtr_txt, ytr, Xva_txt, yva = data
nfeat = 4096
Xtr = hash_vectorize(Xtr_txt, n_features=nfeat, seed=1234)
Xva = hash_vectorize(Xva_txt, n_features=nfeat, seed=5678)
Xtr_t = torch.from_numpy(Xtr); ytr_t = torch.from_numpy(ytr.astype(np.float32))
Xva_t = torch.from_numpy(Xva); yva_t = torch.from_numpy(yva.astype(np.float32))
model = TinyMLP(nfeat, genome).to(device)
opt = optim.AdamW(model.parameters(), lr=2e-3)
lossf = nn.BCEWithLogitsLoss()
model.train(); steps, bs, N = 120, 256, Xtr_t.size(0)
for _ in range(steps):
idx = torch.randint(0, N, (bs,))
xb = Xtr_t[idx].to(device); yb = ytr_t[idx].to(device)
logits = model(xb); loss = lossf(logits, yb)
opt.zero_grad(); loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
opt.step()
model.eval()
with torch.no_grad():
logits = model(Xva_t.to(device))
probs = torch.sigmoid(logits).cpu().numpy()
if dataset_name.startswith("PIQA"):
probs = probs.reshape(-1,2); yva2 = yva.reshape(-1,2)
pred = (probs[:,0] > probs[:,1]).astype(np.int64)
truth = (yva2[:,0] == 1).astype(np.int64)
acc = float((pred == truth).mean())
else:
probs = probs.reshape(-1,4); yva2 = yva.reshape(-1,4)
pred = probs.argmax(axis=1); truth = yva2.argmax(axis=1)
acc = float((pred == truth).mean())
parsimony = 0.00000002 * (genome.d_model**2 * genome.n_layers) + 0.0001 * genome.memory_tokens
noise = np.random.normal(scale=0.01 * max(0.0, min(1.0, explore)))
fitness = (1.0 - acc) + parsimony + noise
return float(max(0.0, min(1.5, fitness))), float(acc)
def evaluate_genome(genome: Genome, dataset: str, explore: float):
if dataset == "Demo (Surrogate)":
v = genome.vector() * 2 - 1
base = rastrigin(v)
parsimony = 0.001 * (genome.d_model + 50*genome.n_layers + 20*genome.n_heads + 100*genome.memory_tokens)
noise = np.random.normal(scale=0.05 * max(0.0, min(1.0, explore)))
return float(base + parsimony + noise), None
if dataset.startswith("PIQA"): return _train_eval_proxy(genome, "PIQA", explore)
if dataset.startswith("HellaSwag"): return _train_eval_proxy(genome, "HellaSwag", explore)
v = genome.vector() * 2 - 1
return float(rastrigin(v)), None
# =========================
# VIZ — idle sphere, big transparent surface
# =========================
BG = "#0F1A24"
DOT = "#93C5FD"
SPHERE = "#cbd5e1"
def sphere_project(points: np.ndarray) -> np.ndarray:
rng = np.random.RandomState(42)
W = rng.normal(size=(points.shape[1], 3)).astype(np.float32)
Y = points @ W
norms = np.linalg.norm(Y, axis=1, keepdims=True) + 1e-8
return (Y / norms) * 1.22
def make_idle_sphere() -> go.Figure:
u = np.linspace(0, 2*np.pi, 72)
v = np.linspace(0, np.pi, 36)
r = 1.22
xs = r*np.outer(np.cos(u), np.sin(v))
ys = r*np.outer(np.sin(u), np.sin(v))
zs = r*np.outer(np.ones_like(u), np.cos(v))
sphere = go.Surface(
x=xs, y=ys, z=zs,
opacity=0.06, showscale=False,
colorscale=[[0, SPHERE],[1, SPHERE]],
hoverinfo="skip"
)
layout = go.Layout(
paper_bgcolor=BG, plot_bgcolor=BG,
title=dict(text="Architecture Space (idle)", font=dict(color="#E5E7EB")),
scene=dict(
xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False),
bgcolor=BG
),
margin=dict(l=0, r=0, t=36, b=0), showlegend=False, height=720,
font=dict(family="Inter, Arial, sans-serif", size=14, color="#E5E7EB")
)
return go.Figure(data=[sphere], layout=layout)
def make_sphere_figure(points3d: np.ndarray, genomes: List[Genome], gen_idx: int) -> go.Figure:
custom = np.array([[g.d_model, g.n_layers, g.n_heads, g.ffn_mult, g.memory_tokens, g.dropout,
g.species, g.fitness, (g.acc if g.acc is not None else -1.0)]
for g in genomes], dtype=np.float32)
scatter = go.Scatter3d(
x=points3d[:,0], y=points3d[:,1], z=points3d[:,2],
mode='markers',
marker=dict(size=7.0, color=DOT, opacity=0.92),
customdata=custom,
hovertemplate=(
"<b>Genome</b><br>"
"d_model=%{customdata[0]:.0f} · layers=%{customdata[1]:.0f} · heads=%{customdata[2]:.0f}<br>"
"ffn_mult=%{customdata[3]:.1f} · mem=%{customdata[4]:.0f} · drop=%{customdata[5]:.2f}<br>"
"fitness=%{customdata[7]:.4f} · acc=%{customdata[8]:.3f}<extra></extra>"
)
)
idle = make_idle_sphere()
fig = go.Figure(data=idle.data + (scatter,), layout=idle.layout)
fig.update_layout(title=dict(text=f"Evo Architecture Space — Gen {gen_idx}"))
return fig
def make_history_figure(history: List[Tuple[int,float,float]], metric: str) -> go.Figure:
xs = [h[0] for h in history]
if metric == "Accuracy":
ys = [h[2] if (h[2] == h[2]) else None for h in history]
title, ylab = "Best Accuracy per Generation", "Accuracy"
else:
ys = [h[1] for h in history]
title, ylab = "Best Fitness per Generation", "Fitness (↓ better)"
fig = go.Figure(data=[go.Scatter(x=xs, y=ys, mode="lines+markers", line=dict(width=2), marker=dict(color=DOT))])
fig.update_layout(
paper_bgcolor=BG, plot_bgcolor=BG, font=dict(color="#E5E7EB"),
title=dict(text=title), xaxis_title="Generation", yaxis_title=ylab,
margin=dict(l=30, r=10, t=36, b=30), height=340
)
fig.update_xaxes(gridcolor="#1f2b36"); fig.update_yaxes(gridcolor="#1f2b36")
return fig
def fig_to_html(fig: go.Figure) -> str:
# Inline Plotly JS so it renders even without CDN
return pio.to_html(fig, include_plotlyjs=True, full_html=False, config=dict(displaylogo=False))
def approx_params(g: Genome) -> int:
per_layer = (4.0 + 2.0 * float(g.ffn_mult)) * (g.d_model ** 2)
total = per_layer * g.n_layers + 1000 * g.memory_tokens
return int(total)
# =========================
# RUNNER
# =========================
class EvoRunner:
def __init__(self):
self.lock = threading.Lock()
self.running = False
self.stop_flag = False
self.state: Dict[str, Any] = {}
# Seed idle visuals
idle = fig_to_html(make_idle_sphere())
self.state = {
"sphere_html": idle,
"history_html": fig_to_html(make_history_figure([], "Accuracy")),
"top": [], "best": {}, "gen": 0,
"dataset": "Demo (Surrogate)", "metric": "Accuracy"
}
def run(self, dataset, pop_size, generations, mutation_rate, explore, exploit, seed, pace_ms, metric_choice):
rng = random.Random(int(seed))
self.stop_flag = False
self.running = True
pop: List[Genome] = [random_genome(rng) for _ in range(pop_size)]
for g in pop:
fit, acc = evaluate_genome(g, dataset, explore)
g.fitness, g.acc = fit, acc
history: List[Tuple[int,float,float]] = []
for gen in range(1, generations+1):
if self.stop_flag: break
k = max(2, int(2 + exploit * 5))
parents = [min(rng.sample(pop, k=k), key=lambda x: x.fitness) for _ in range(pop_size)]
children = []
for i in range(0, pop_size, 2):
a = parents[i]; b = parents[(i+1) % pop_size]
child1 = mutate(crossover(a,b,rng), rng, mutation_rate)
child2 = mutate(crossover(b,a,rng), rng, mutation_rate)
children.extend([child1, child2])
children = children[:pop_size]
for c in children:
fit, acc = evaluate_genome(c, dataset, explore)
c.fitness, c.acc = fit, acc
elite_n = max(1, pop_size // 10)
elites = sorted(pop, key=lambda x: x.fitness)[:elite_n]
pop = sorted(children, key=lambda x: x.fitness)
pop[-elite_n:] = elites
best = min(pop, key=lambda x: x.fitness)
history.append((gen, best.fitness, (best.acc if best.acc is not None else float("nan"))))
P = np.stack([g.vector() for g in pop], axis=0)
P3 = sphere_project(P)
sphere_fig = make_sphere_figure(P3, pop, gen)
hist_fig = make_history_figure(history, metric_choice)
top = sorted(pop, key=lambda x: x.fitness)[: min(12, len(pop))]
top_table = [{
"gen": gen, "fitness": round(t.fitness, 4),
"accuracy": (None if t.acc is None else round(float(t.acc), 4)),
"d_model": t.d_model, "layers": t.n_layers, "heads": t.n_heads,
"ffn_mult": t.ffn_mult, "mem": t.memory_tokens, "dropout": t.dropout,
"params_approx": approx_params(t)
} for t in top]
best_card = top_table[0] if top_table else {}
with self.lock:
self.state = {
"sphere_html": fig_to_html(sphere_fig),
"history_html": fig_to_html(hist_fig),
"top": top_table,
"best": best_card,
"gen": gen,
"dataset": dataset,
"metric": metric_choice
}
time.sleep(max(0.0, pace_ms/1000.0))
self.running = False
def start(self, *args, **kwargs):
if self.running: return
t = threading.Thread(target=self.run, args=args, kwargs=kwargs, daemon=True)
t.start()
def stop(self): self.stop_flag = True
def clear(self):
# stop and reset to idle sphere
self.stop_flag = True
idle = fig_to_html(make_idle_sphere())
with self.lock:
self.running = False
self.state = {
"sphere_html": idle,
"history_html": fig_to_html(make_history_figure([], "Accuracy")),
"top": [], "best": {}, "gen": 0,
"dataset": "Demo (Surrogate)", "metric": "Accuracy"
}
runner = EvoRunner()
# =========================
# UI CALLBACKS
# =========================
def start_evo(dataset, pop, gens, mut, explore, exploit, seed, pace_ms, metric_choice):
runner.start(dataset, int(pop), int(gens), float(mut), float(explore), float(exploit), int(seed), int(pace_ms), metric_choice)
return (gr.update(interactive=False), gr.update(interactive=True), gr.update(interactive=False))
def stop_evo():
runner.stop()
return (gr.update(interactive=True), gr.update(interactive=False), gr.update(interactive=True))
def clear_evo():
runner.clear()
sphere_html, history_html, stats_md, df, gen_counter_md = poll_state()
return sphere_html, history_html, stats_md, df, gen_counter_md, gr.update(interactive=True), gr.update(interactive=False), gr.update(interactive=True)
def poll_state():
with runner.lock:
s = runner.state.copy()
sphere_html = s.get("sphere_html", "")
history_html = s.get("history_html", "")
best = s.get("best", {})
gen = s.get("gen", 0)
dataset = s.get("dataset", "Demo (Surrogate)")
top = s.get("top", [])
if best:
acc_txt = "—" if best.get("accuracy") is None else f"{best.get('accuracy'):.3f}"
stats_md = (
f"**Dataset:** {dataset} \n"
f"**Generation:** {gen} \n"
f"**Best fitness:** {best.get('fitness','–')} \n"
f"**Best accuracy:** {acc_txt} \n"
f"**Config:** d_model={best.get('d_model')} · layers={best.get('layers')} · "
f"heads={best.get('heads')} · ffn_mult={best.get('ffn_mult')} · mem={best.get('mem')} · "
f"dropout={best.get('dropout')} \n"
f"**~Params (rough):** {best.get('params_approx'):,}"
)
else:
stats_md = "Ready. Press **Start** to begin evolution."
df = pd.DataFrame(top)
gen_counter_md = f"Gen **{gen}**"
return sphere_html, history_html, stats_md, df, gen_counter_md
def export_snapshot():
from json import dumps
with runner.lock:
payload = dumps(runner.state, default=lambda o: o, indent=2)
path = "evo_snapshot.json"
with open(path, "w", encoding="utf-8") as f:
f.write(payload)
return path
# =========================
# BUILD ENHANCED UI
# =========================
with gr.Blocks(css=ENHANCED_CSS, theme=gr.themes.Default()) as demo:
# Header
with gr.Column(elem_id="header"):
gr.Markdown("## 🧬 Neuroevolution Playground")
gr.Markdown("Evolve neural architectures using genetic algorithms")
with gr.Row():
# Left Panel - Controls
with gr.Column(scale=1):
# Parameters Group
with gr.Group(elem_classes=["control-group"]):
gr.Markdown("### 🛠 Evolution Parameters")
with gr.Column():
dataset = gr.Dropdown(
label="Evaluation Dataset",
choices=["Demo (Surrogate)", "PIQA (Phase 2)", "HellaSwag (Phase 2)"],
value="Demo (Surrogate)",
info="Dataset used for fitness evaluation"
)
with gr.Row():
with gr.Column():
pop = gr.Slider(8, 80, value=24, step=2, label="Population Size", elem_classes=["param-slider"])
gens = gr.Slider(5, 200, value=60, step=1, label="Max Generations", elem_classes=["param-slider"])
mut = gr.Slider(0.05, 0.9, value=0.25, step=0.01, label="Mutation Rate", elem_classes=["param-slider"])
with gr.Column():
explore = gr.Slider(0.0, 1.0, value=0.35, step=0.05, label="Exploration", elem_classes=["param-slider"])
exploit = gr.Slider(0.0, 1.0, value=0.65, step=0.05, label="Exploitation", elem_classes=["param-slider"])
seed = gr.Number(value=42, label="Random Seed", precision=0)
pace = gr.Slider(0, 1000, value=120, step=10, label="Simulation Speed (ms)", elem_classes=["param-slider"])
metric_choice = gr.Radio(choices=["Accuracy", "Fitness"], value="Accuracy", label="History Metric Display")
# Status Panel
with gr.Group(elem_classes=["panel", "stats-panel"]):
gr.Markdown("### 📊 Current Status")
stats_md = gr.Markdown("Ready. Press **Start** to begin evolution.", elem_id="stats")
# Action Buttons
with gr.Row(elem_classes=["action-buttons"]):
start = gr.Button("▶ Start Evolution", variant="primary", elem_classes=["btn-primary"])
stop = gr.Button("⏹ Stop", variant="secondary", elem_classes=["btn-danger"], interactive=False)
clear = gr.Button("↻ Reset", elem_classes=["btn-secondary"])
# Export
with gr.Group(elem_classes=["panel"]):
gr.Markdown("### 💾 Export Results")
with gr.Row():
export_btn = gr.Button("Save Snapshot (JSON)")
export_file = gr.File(label="Download snapshot", visible=False)
# Right Panel - Visualizations
with gr.Column(scale=2):
# 3D Visualization
with gr.Group(elem_classes=["panel", "viz-panel"]):
with gr.Column(elem_classes=["viz-header"]):
with gr.Row():
gr.Markdown("### 🌐 Architecture Space", elem_classes=["viz-title"])
gen_counter = gr.Markdown("", elem_classes=["gen-counter"])
sphere_html = gr.HTML()
# History Visualization
with gr.Group(elem_classes=["panel", "viz-panel"]):
with gr.Column(elem_classes=["viz-header"]):
gr.Markdown("### 📈 Performance History", elem_classes=["viz-title"])
hist_html = gr.HTML()
# Results Table
with gr.Group(elem_classes=["panel"]):
gr.Markdown("### 🏆 Top Genomes")
with gr.Column(elem_classes=["data-table"]):
top_df = gr.Dataframe(label="", wrap=True, interactive=False)
# Footer
with gr.Column(elem_classes=["footer"]):
gr.Markdown("Neuroevolution Playground v1.0 • Plotly + Gradio")
# Wiring
start.click(
start_evo,
[dataset, pop, gens, mut, explore, exploit, seed, pace, metric_choice],
[start, stop, clear]
)
stop.click(stop_evo, [], [start, stop, clear])
clear.click(
clear_evo,
[],
[sphere_html, hist_html, stats_md, top_df, gen_counter, start, stop, clear]
)
export_btn.click(export_snapshot, [], [export_file])
# State polling
demo.load(poll_state, None, [sphere_html, hist_html, stats_md, top_df, gen_counter])
gr.Timer(0.7).tick(poll_state, None, [sphere_html, hist_html, stats_md, top_df, gen_counter])
if __name__ == "__main__":
demo.launch()
|