Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,27 +9,25 @@ import plotly.graph_objs as go
|
|
9 |
import gradio as gr
|
10 |
import pandas as pd
|
11 |
|
12 |
-
#
|
13 |
import torch
|
14 |
import torch.nn as nn
|
15 |
import torch.optim as optim
|
16 |
|
17 |
-
# Local utils (add this file next to app.py)
|
18 |
from data_utils import load_piqa, load_hellaswag, hash_vectorize
|
19 |
|
20 |
# =========================
|
21 |
-
# UX THEME & STYLES
|
22 |
# =========================
|
23 |
CUSTOM_CSS = """
|
24 |
-
:root { --radius-2xl:
|
25 |
-
.gradio-container {max-width:
|
26 |
-
#header-card
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
.
|
31 |
-
|
32 |
-
.gr-button {border-radius:14px}
|
33 |
"""
|
34 |
|
35 |
# =========================
|
@@ -45,9 +43,9 @@ class Genome:
|
|
45 |
dropout: float
|
46 |
species: int = 0
|
47 |
fitness: float = float("inf")
|
|
|
48 |
|
49 |
def vector(self) -> np.ndarray:
|
50 |
-
# Normalized structural vector (0..1)
|
51 |
return np.array([
|
52 |
self.d_model / 1024.0,
|
53 |
self.n_layers / 24.0,
|
@@ -77,7 +75,7 @@ def mutate(g: Genome, rng: random.Random, rate: float) -> Genome:
|
|
77 |
if rng.random() < rate: g.memory_tokens = rng.choice([0, 4, 8, 16])
|
78 |
if rng.random() < rate: g.dropout = rng.choice([0.0, 0.05, 0.1, 0.15])
|
79 |
if rng.random() < rate * 0.5: g.species = rng.randrange(5)
|
80 |
-
g.fitness = float("inf")
|
81 |
return g
|
82 |
|
83 |
def crossover(a: Genome, b: Genome, rng: random.Random) -> Genome:
|
@@ -89,7 +87,8 @@ def crossover(a: Genome, b: Genome, rng: random.Random) -> Genome:
|
|
89 |
memory_tokens = a.memory_tokens if rng.random()<0.5 else b.memory_tokens,
|
90 |
dropout = a.dropout if rng.random()<0.5 else b.dropout,
|
91 |
species = a.species if rng.random()<0.5 else b.species,
|
92 |
-
fitness = float("inf")
|
|
|
93 |
)
|
94 |
|
95 |
# =========================
|
@@ -100,7 +99,6 @@ def rastrigin(x: np.ndarray) -> float:
|
|
100 |
return A * n + np.sum(x**2 - A * np.cos(2 * math.pi * x))
|
101 |
|
102 |
class TinyMLP(nn.Module):
|
103 |
-
"""Small MLP whose capacity depends on the genome (so evolution matters)."""
|
104 |
def __init__(self, in_dim: int, genome: Genome):
|
105 |
super().__init__()
|
106 |
h1 = max(64, int(0.25 * genome.d_model))
|
@@ -110,29 +108,27 @@ class TinyMLP(nn.Module):
|
|
110 |
nn.Linear(h1, h2), nn.ReLU(),
|
111 |
nn.Linear(h2, 1)
|
112 |
)
|
113 |
-
def forward(self, x):
|
114 |
-
return self.net(x).squeeze(-1)
|
115 |
|
116 |
@lru_cache(maxsize=4)
|
117 |
def _cached_dataset(name: str):
|
118 |
-
if name.startswith("PIQA"):
|
119 |
-
|
120 |
-
|
121 |
-
return load_hellaswag(subset=800, seed=42)
|
122 |
-
return None # Demo uses surrogate
|
123 |
|
124 |
-
def _train_eval_proxy(genome: Genome, dataset_name: str, explore: float, device: str = "cpu") -> Optional[float]:
|
|
|
125 |
data = _cached_dataset(dataset_name)
|
126 |
if data is None:
|
127 |
-
|
128 |
-
|
|
|
129 |
|
130 |
-
|
131 |
nfeat = 4096
|
132 |
Xtr = hash_vectorize(Xtr_txt, n_features=nfeat, seed=1234)
|
133 |
Xva = hash_vectorize(Xva_txt, n_features=nfeat, seed=5678)
|
134 |
|
135 |
-
# to torch tensors
|
136 |
Xtr_t = torch.from_numpy(Xtr)
|
137 |
ytr_t = torch.from_numpy(ytr.astype(np.float32))
|
138 |
Xva_t = torch.from_numpy(Xva)
|
@@ -142,129 +138,119 @@ def _train_eval_proxy(genome: Genome, dataset_name: str, explore: float, device:
|
|
142 |
opt = optim.AdamW(model.parameters(), lr=2e-3)
|
143 |
lossf = nn.BCEWithLogitsLoss()
|
144 |
|
145 |
-
# small, fast loop
|
146 |
model.train()
|
147 |
-
steps = 120
|
148 |
-
bs = 256
|
149 |
N = Xtr_t.size(0)
|
150 |
for _ in range(steps):
|
151 |
idx = torch.randint(0, N, (bs,))
|
152 |
-
xb = Xtr_t[idx].to(device)
|
153 |
-
|
154 |
-
|
155 |
-
loss = lossf(logits, yb)
|
156 |
-
opt.zero_grad()
|
157 |
-
loss.backward()
|
158 |
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
159 |
opt.step()
|
160 |
|
161 |
-
# eval
|
162 |
model.eval()
|
163 |
with torch.no_grad():
|
164 |
logits = model(Xva_t.to(device))
|
165 |
probs = torch.sigmoid(logits).cpu().numpy()
|
166 |
|
167 |
-
# Turn rows into accuracy
|
168 |
if dataset_name.startswith("PIQA"):
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
pred = (probs[:, 0] > probs[:, 1]).astype(np.int64)
|
173 |
-
truth = (yva2[:, 0] == 1).astype(np.int64) # 1 means first row is correct
|
174 |
acc = float((pred == truth).mean())
|
175 |
else:
|
176 |
-
|
177 |
-
|
178 |
-
yva2 = yva.reshape(-1, 4)
|
179 |
-
pred = probs.argmax(axis=1)
|
180 |
-
truth = yva2.argmax(axis=1)
|
181 |
acc = float((pred == truth).mean())
|
182 |
|
183 |
-
# Fitness = error + tiny parsimony + small exploration noise (minimize)
|
184 |
parsimony = 0.00000002 * (genome.d_model**2 * genome.n_layers) + 0.0001 * genome.memory_tokens
|
185 |
noise = np.random.normal(scale=0.01 * max(0.0, min(1.0, explore)))
|
186 |
fitness = (1.0 - acc) + parsimony + noise
|
187 |
-
return float(max(0.0, min(1.5, fitness)))
|
188 |
|
189 |
-
def
|
190 |
-
"""Selects the correct fitness path based on dropdown."""
|
191 |
if dataset == "Demo (Surrogate)":
|
192 |
v = genome.vector() * 2 - 1
|
193 |
base = rastrigin(v)
|
194 |
parsimony = 0.001 * (genome.d_model + 50*genome.n_layers + 20*genome.n_heads + 100*genome.memory_tokens)
|
195 |
noise = np.random.normal(scale=0.05 * max(0.0, min(1.0, explore)))
|
196 |
-
return float(base + parsimony + noise)
|
197 |
-
|
198 |
if dataset.startswith("PIQA"):
|
199 |
-
|
200 |
-
if fit is not None:
|
201 |
-
return fit
|
202 |
-
|
203 |
if dataset.startswith("HellaSwag"):
|
204 |
-
|
205 |
-
|
206 |
-
return fit
|
207 |
-
|
208 |
-
# fallback to surrogate if something went wrong
|
209 |
v = genome.vector() * 2 - 1
|
210 |
-
return float(rastrigin(v))
|
211 |
|
212 |
# =========================
|
213 |
-
# PROJECTION & VIZ
|
214 |
# =========================
|
215 |
def sphere_project(points: np.ndarray) -> np.ndarray:
|
216 |
-
# Fixed random projection 6D -> 3D then normalize to unit sphere
|
217 |
rng = np.random.RandomState(42)
|
218 |
W = rng.normal(size=(points.shape[1], 3)).astype(np.float32)
|
219 |
Y = points @ W
|
220 |
norms = np.linalg.norm(Y, axis=1, keepdims=True) + 1e-8
|
221 |
-
return Y / norms
|
222 |
|
223 |
def make_sphere_figure(points3d: np.ndarray, genomes: List[Genome], gen_idx: int) -> go.Figure:
|
224 |
species = np.array([g.species for g in genomes])
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
|
230 |
scatter = go.Scatter3d(
|
231 |
x=points3d[:,0], y=points3d[:,1], z=points3d[:,2],
|
232 |
mode='markers',
|
233 |
-
marker=dict(size=
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
)
|
236 |
|
237 |
-
#
|
238 |
-
u = np.linspace(0, 2*np.pi,
|
239 |
-
v = np.linspace(0, np.pi,
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
|
|
244 |
|
245 |
layout = go.Layout(
|
246 |
title=f"Evo Sphere — Generation {gen_idx}",
|
247 |
scene=dict(xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False)),
|
248 |
margin=dict(l=0, r=0, t=40, b=0),
|
249 |
-
showlegend=False
|
|
|
250 |
)
|
251 |
return go.Figure(data=[sphere, scatter], layout=layout)
|
252 |
|
253 |
-
def make_history_figure(history: List[Tuple[int,float]]) -> go.Figure:
|
|
|
254 |
xs = [h[0] for h in history]
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
256 |
fig = go.Figure(data=[go.Scatter(x=xs, y=ys, mode="lines+markers")])
|
257 |
-
fig.update_layout(title=
|
258 |
-
|
259 |
-
margin=dict(l=30,r=10,t=40,b=30))
|
260 |
return fig
|
261 |
|
262 |
def approx_params(g: Genome) -> int:
|
263 |
-
# Very rough estimate ignoring embeddings/vocab:
|
264 |
-
# per-layer ~ (4 + 2*ffn_mult) * d_model^2
|
265 |
per_layer = (4.0 + 2.0 * float(g.ffn_mult)) * (g.d_model ** 2)
|
266 |
-
total = per_layer * g.n_layers
|
267 |
-
total += 1000 * g.memory_tokens # tiny bump for memory pathways (illustrative)
|
268 |
return int(total)
|
269 |
|
270 |
# =========================
|
@@ -277,7 +263,7 @@ class EvoRunner:
|
|
277 |
self.stop_flag = False
|
278 |
self.state: Dict[str, Any] = {}
|
279 |
|
280 |
-
def run(self, dataset, pop_size, generations, mutation_rate, explore, exploit, seed, pace_ms):
|
281 |
rng = random.Random(int(seed))
|
282 |
self.stop_flag = False
|
283 |
self.running = True
|
@@ -285,15 +271,16 @@ class EvoRunner:
|
|
285 |
pop: List[Genome] = [random_genome(rng) for _ in range(pop_size)]
|
286 |
# initial eval
|
287 |
for g in pop:
|
288 |
-
|
|
|
289 |
|
290 |
-
history: List[Tuple[int,float]] = []
|
291 |
best_overall: Optional[Genome] = None
|
292 |
|
293 |
for gen in range(1, generations+1):
|
294 |
if self.stop_flag: break
|
295 |
|
296 |
-
# Selection
|
297 |
k = max(2, int(2 + exploit * 5))
|
298 |
parents = []
|
299 |
for _ in range(pop_size):
|
@@ -303,16 +290,16 @@ class EvoRunner:
|
|
303 |
# Reproduce
|
304 |
children = []
|
305 |
for i in range(0, pop_size, 2):
|
306 |
-
a = parents[i]
|
307 |
-
b = parents[(i+1) % pop_size]
|
308 |
child1 = mutate(crossover(a,b,rng), rng, mutation_rate)
|
309 |
child2 = mutate(crossover(b,a,rng), rng, mutation_rate)
|
310 |
children.extend([child1, child2])
|
311 |
children = children[:pop_size]
|
312 |
|
313 |
-
# Evaluate
|
314 |
for c in children:
|
315 |
-
|
|
|
316 |
|
317 |
# Elitism
|
318 |
elite_n = max(1, pop_size // 10)
|
@@ -326,18 +313,19 @@ class EvoRunner:
|
|
326 |
if best_overall is None or best.fitness < best_overall.fitness:
|
327 |
best_overall = best
|
328 |
|
329 |
-
history.append((gen, best.fitness))
|
330 |
|
331 |
# Viz snapshot
|
332 |
P = np.stack([g.vector() for g in pop], axis=0)
|
333 |
P3 = sphere_project(P)
|
334 |
sphere_fig = make_sphere_figure(P3, pop, gen)
|
335 |
-
hist_fig = make_history_figure(history)
|
336 |
top = sorted(pop, key=lambda x: x.fitness)[: min(12, len(pop))]
|
337 |
top_table = [
|
338 |
{
|
339 |
"gen": gen,
|
340 |
"fitness": round(t.fitness, 4),
|
|
|
341 |
"d_model": t.d_model,
|
342 |
"layers": t.n_layers,
|
343 |
"heads": t.n_heads,
|
@@ -357,7 +345,8 @@ class EvoRunner:
|
|
357 |
"top": top_table,
|
358 |
"best": best_card,
|
359 |
"gen": gen,
|
360 |
-
"dataset": dataset
|
|
|
361 |
}
|
362 |
|
363 |
time.sleep(max(0.0, pace_ms/1000.0))
|
@@ -369,16 +358,15 @@ class EvoRunner:
|
|
369 |
t = threading.Thread(target=self.run, args=args, kwargs=kwargs, daemon=True)
|
370 |
t.start()
|
371 |
|
372 |
-
def stop(self):
|
373 |
-
self.stop_flag = True
|
374 |
|
375 |
runner = EvoRunner()
|
376 |
|
377 |
# =========================
|
378 |
-
#
|
379 |
# =========================
|
380 |
-
def start_evo(dataset, pop, gens, mut, explore, exploit, seed, pace_ms):
|
381 |
-
runner.start(dataset, int(pop), int(gens), float(mut), float(explore), float(exploit), int(seed), int(pace_ms))
|
382 |
return (gr.update(interactive=False), gr.update(interactive=True))
|
383 |
|
384 |
def stop_evo():
|
@@ -389,16 +377,19 @@ def poll_state():
|
|
389 |
with runner.lock:
|
390 |
s = runner.state.copy()
|
391 |
sphere = s.get("sphere", go.Figure())
|
392 |
-
history = s.get("history", go.Figure())
|
393 |
best = s.get("best", {})
|
394 |
gen = s.get("gen", 0)
|
395 |
dataset = s.get("dataset", "Demo (Surrogate)")
|
396 |
top = s.get("top", [])
|
|
|
397 |
if best:
|
|
|
398 |
stats_md = (
|
399 |
f"**Dataset:** {dataset} \n"
|
400 |
f"**Generation:** {gen} \n"
|
401 |
f"**Best fitness:** {best.get('fitness','–')} \n"
|
|
|
402 |
f"**Config:** d_model={best.get('d_model')} · layers={best.get('layers')} · "
|
403 |
f"heads={best.get('heads')} · ffn_mult={best.get('ffn_mult')} · mem={best.get('mem')} · "
|
404 |
f"dropout={best.get('dropout')} \n"
|
@@ -419,14 +410,13 @@ def export_snapshot():
|
|
419 |
return path
|
420 |
|
421 |
# =========================
|
422 |
-
# BUILD UI
|
423 |
# =========================
|
424 |
with gr.Blocks(theme=gr.themes.Soft(), css=CUSTOM_CSS) as demo:
|
425 |
with gr.Column(elem_id="header-card"):
|
426 |
gr.Markdown(
|
427 |
-
"# Evo Playground — Live
|
428 |
-
"
|
429 |
-
"Choose a dataset and search behavior; the 3D sphere shows the architecture landscape (species = colors)."
|
430 |
)
|
431 |
|
432 |
with gr.Row():
|
@@ -435,9 +425,9 @@ with gr.Blocks(theme=gr.themes.Soft(), css=CUSTOM_CSS) as demo:
|
|
435 |
with gr.Group():
|
436 |
dataset = gr.Dropdown(
|
437 |
label="Dataset",
|
438 |
-
choices=["Demo (Surrogate)", "PIQA (Phase 2)", "HellaSwag (Phase 2)"
|
439 |
value="Demo (Surrogate)",
|
440 |
-
info="
|
441 |
)
|
442 |
pop = gr.Slider(8, 80, value=24, step=2, label="Population size")
|
443 |
gens = gr.Slider(5, 200, value=60, step=1, label="Max generations")
|
@@ -447,12 +437,13 @@ with gr.Blocks(theme=gr.themes.Soft(), css=CUSTOM_CSS) as demo:
|
|
447 |
exploit = gr.Slider(0.0, 1.0, value=0.65, step=0.05, label="Exploitation")
|
448 |
seed = gr.Number(value=42, label="Seed", precision=0)
|
449 |
pace = gr.Slider(0, 1000, value=120, step=10, label="Pace (ms between gens)")
|
|
|
450 |
with gr.Row():
|
451 |
start = gr.Button("▶ Start Evolution", variant="primary")
|
452 |
stop = gr.Button("⏹ Stop", variant="secondary")
|
453 |
|
454 |
with gr.Group(elem_id="right-card"):
|
455 |
-
stats_md = gr.Markdown("Waiting…")
|
456 |
export_btn = gr.Button("Export Snapshot (JSON)")
|
457 |
export_file = gr.File(label="Download snapshot", visible=False)
|
458 |
|
@@ -461,16 +452,16 @@ with gr.Blocks(theme=gr.themes.Soft(), css=CUSTOM_CSS) as demo:
|
|
461 |
with gr.Group(elem_id="viz-card"):
|
462 |
sphere_plot = gr.Plot(label="Evolution Sphere")
|
463 |
with gr.Group(elem_id="viz-card"):
|
464 |
-
hist_plot = gr.Plot(label="
|
465 |
with gr.Group(elem_id="table-card"):
|
466 |
top_df = gr.Dataframe(label="Top Genomes (live)", wrap=True, interactive=False)
|
467 |
|
468 |
# Wiring
|
469 |
-
start.click(start_evo, [dataset, pop, gens, mut, explore, exploit, seed, pace], [start, stop])
|
470 |
stop.click(stop_evo, [], [start, stop])
|
471 |
export_btn.click(export_snapshot, [], [export_file])
|
472 |
|
473 |
-
# Initial paint
|
474 |
demo.load(poll_state, None, [sphere_plot, hist_plot, stats_md, top_df])
|
475 |
|
476 |
# Continuous polling (every 0.7s)
|
|
|
9 |
import gradio as gr
|
10 |
import pandas as pd
|
11 |
|
12 |
+
# Proxy fitness deps
|
13 |
import torch
|
14 |
import torch.nn as nn
|
15 |
import torch.optim as optim
|
16 |
|
|
|
17 |
from data_utils import load_piqa, load_hellaswag, hash_vectorize
|
18 |
|
19 |
# =========================
|
20 |
+
# UX THEME & STYLES (cleaner, pro)
|
21 |
# =========================
|
22 |
CUSTOM_CSS = """
|
23 |
+
:root { --radius-2xl: 18px; }
|
24 |
+
.gradio-container {max-width: 1320px !important}
|
25 |
+
#header-card, #viz-card, #right-card, #table-card {
|
26 |
+
border-radius: var(--radius-2xl);
|
27 |
+
box-shadow: 0 6px 24px rgba(0,0,0,0.06);
|
28 |
+
}
|
29 |
+
.gr-button {border-radius: 12px}
|
30 |
+
#stats-md {font-size: 15px;}
|
|
|
31 |
"""
|
32 |
|
33 |
# =========================
|
|
|
43 |
dropout: float
|
44 |
species: int = 0
|
45 |
fitness: float = float("inf")
|
46 |
+
acc: Optional[float] = None # accuracy when dataset is PIQA/HS
|
47 |
|
48 |
def vector(self) -> np.ndarray:
|
|
|
49 |
return np.array([
|
50 |
self.d_model / 1024.0,
|
51 |
self.n_layers / 24.0,
|
|
|
75 |
if rng.random() < rate: g.memory_tokens = rng.choice([0, 4, 8, 16])
|
76 |
if rng.random() < rate: g.dropout = rng.choice([0.0, 0.05, 0.1, 0.15])
|
77 |
if rng.random() < rate * 0.5: g.species = rng.randrange(5)
|
78 |
+
g.fitness = float("inf"); g.acc = None
|
79 |
return g
|
80 |
|
81 |
def crossover(a: Genome, b: Genome, rng: random.Random) -> Genome:
|
|
|
87 |
memory_tokens = a.memory_tokens if rng.random()<0.5 else b.memory_tokens,
|
88 |
dropout = a.dropout if rng.random()<0.5 else b.dropout,
|
89 |
species = a.species if rng.random()<0.5 else b.species,
|
90 |
+
fitness = float("inf"),
|
91 |
+
acc = None
|
92 |
)
|
93 |
|
94 |
# =========================
|
|
|
99 |
return A * n + np.sum(x**2 - A * np.cos(2 * math.pi * x))
|
100 |
|
101 |
class TinyMLP(nn.Module):
|
|
|
102 |
def __init__(self, in_dim: int, genome: Genome):
|
103 |
super().__init__()
|
104 |
h1 = max(64, int(0.25 * genome.d_model))
|
|
|
108 |
nn.Linear(h1, h2), nn.ReLU(),
|
109 |
nn.Linear(h2, 1)
|
110 |
)
|
111 |
+
def forward(self, x): return self.net(x).squeeze(-1)
|
|
|
112 |
|
113 |
@lru_cache(maxsize=4)
|
114 |
def _cached_dataset(name: str):
|
115 |
+
if name.startswith("PIQA"): return load_piqa(subset=800, seed=42)
|
116 |
+
if name.startswith("HellaSwag"): return load_hellaswag(subset=800, seed=42)
|
117 |
+
return None
|
|
|
|
|
118 |
|
119 |
+
def _train_eval_proxy(genome: Genome, dataset_name: str, explore: float, device: str = "cpu") -> Tuple[float, Optional[float]]:
|
120 |
+
"""Returns (fitness, accuracy or None)."""
|
121 |
data = _cached_dataset(dataset_name)
|
122 |
if data is None:
|
123 |
+
# Demo path handled elsewhere
|
124 |
+
v = genome.vector() * 2 - 1
|
125 |
+
return float(rastrigin(v)), None
|
126 |
|
127 |
+
Xtr_txt, ytr, Xva_txt, yva = data
|
128 |
nfeat = 4096
|
129 |
Xtr = hash_vectorize(Xtr_txt, n_features=nfeat, seed=1234)
|
130 |
Xva = hash_vectorize(Xva_txt, n_features=nfeat, seed=5678)
|
131 |
|
|
|
132 |
Xtr_t = torch.from_numpy(Xtr)
|
133 |
ytr_t = torch.from_numpy(ytr.astype(np.float32))
|
134 |
Xva_t = torch.from_numpy(Xva)
|
|
|
138 |
opt = optim.AdamW(model.parameters(), lr=2e-3)
|
139 |
lossf = nn.BCEWithLogitsLoss()
|
140 |
|
|
|
141 |
model.train()
|
142 |
+
steps, bs = 120, 256
|
|
|
143 |
N = Xtr_t.size(0)
|
144 |
for _ in range(steps):
|
145 |
idx = torch.randint(0, N, (bs,))
|
146 |
+
xb = Xtr_t[idx].to(device); yb = ytr_t[idx].to(device)
|
147 |
+
logits = model(xb); loss = lossf(logits, yb)
|
148 |
+
opt.zero_grad(); loss.backward()
|
|
|
|
|
|
|
149 |
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
150 |
opt.step()
|
151 |
|
|
|
152 |
model.eval()
|
153 |
with torch.no_grad():
|
154 |
logits = model(Xva_t.to(device))
|
155 |
probs = torch.sigmoid(logits).cpu().numpy()
|
156 |
|
|
|
157 |
if dataset_name.startswith("PIQA"):
|
158 |
+
probs = probs.reshape(-1, 2); yva2 = yva.reshape(-1, 2)
|
159 |
+
pred = (probs[:,0] > probs[:,1]).astype(np.int64)
|
160 |
+
truth = (yva2[:,0] == 1).astype(np.int64)
|
|
|
|
|
161 |
acc = float((pred == truth).mean())
|
162 |
else:
|
163 |
+
probs = probs.reshape(-1, 4); yva2 = yva.reshape(-1, 4)
|
164 |
+
pred = probs.argmax(axis=1); truth = yva2.argmax(axis=1)
|
|
|
|
|
|
|
165 |
acc = float((pred == truth).mean())
|
166 |
|
|
|
167 |
parsimony = 0.00000002 * (genome.d_model**2 * genome.n_layers) + 0.0001 * genome.memory_tokens
|
168 |
noise = np.random.normal(scale=0.01 * max(0.0, min(1.0, explore)))
|
169 |
fitness = (1.0 - acc) + parsimony + noise
|
170 |
+
return float(max(0.0, min(1.5, fitness))), float(acc)
|
171 |
|
172 |
+
def evaluate_genome(genome: Genome, dataset: str, explore: float) -> Tuple[float, Optional[float]]:
|
|
|
173 |
if dataset == "Demo (Surrogate)":
|
174 |
v = genome.vector() * 2 - 1
|
175 |
base = rastrigin(v)
|
176 |
parsimony = 0.001 * (genome.d_model + 50*genome.n_layers + 20*genome.n_heads + 100*genome.memory_tokens)
|
177 |
noise = np.random.normal(scale=0.05 * max(0.0, min(1.0, explore)))
|
178 |
+
return float(base + parsimony + noise), None
|
|
|
179 |
if dataset.startswith("PIQA"):
|
180 |
+
return _train_eval_proxy(genome, "PIQA", explore)
|
|
|
|
|
|
|
181 |
if dataset.startswith("HellaSwag"):
|
182 |
+
return _train_eval_proxy(genome, "HellaSwag", explore)
|
183 |
+
# fallback
|
|
|
|
|
|
|
184 |
v = genome.vector() * 2 - 1
|
185 |
+
return float(rastrigin(v)), None
|
186 |
|
187 |
# =========================
|
188 |
+
# PROJECTION & VIZ (bigger, transparent sphere, rich hover)
|
189 |
# =========================
|
190 |
def sphere_project(points: np.ndarray) -> np.ndarray:
|
|
|
191 |
rng = np.random.RandomState(42)
|
192 |
W = rng.normal(size=(points.shape[1], 3)).astype(np.float32)
|
193 |
Y = points @ W
|
194 |
norms = np.linalg.norm(Y, axis=1, keepdims=True) + 1e-8
|
195 |
+
return (Y / norms) * 1.15 # slightly larger radius
|
196 |
|
197 |
def make_sphere_figure(points3d: np.ndarray, genomes: List[Genome], gen_idx: int) -> go.Figure:
|
198 |
species = np.array([g.species for g in genomes])
|
199 |
+
# Prepare hover with all fields
|
200 |
+
custom = np.array([[g.d_model, g.n_layers, g.n_heads, g.ffn_mult, g.memory_tokens, g.dropout,
|
201 |
+
g.species, g.fitness, (g.acc if g.acc is not None else -1.0)]
|
202 |
+
for g in genomes], dtype=np.float32)
|
203 |
|
204 |
scatter = go.Scatter3d(
|
205 |
x=points3d[:,0], y=points3d[:,1], z=points3d[:,2],
|
206 |
mode='markers',
|
207 |
+
marker=dict(size=7, color=species, opacity=0.95),
|
208 |
+
customdata=custom,
|
209 |
+
hovertemplate=(
|
210 |
+
"d_model=%{customdata[0]:.0f}<br>"
|
211 |
+
"layers=%{customdata[1]:.0f} · heads=%{customdata[2]:.0f}<br>"
|
212 |
+
"ffn_mult=%{customdata[3]:.1f} · mem=%{customdata[4]:.0f} · drop=%{customdata[5]:.2f}<br>"
|
213 |
+
"species=%{customdata[6]:.0f}<br>"
|
214 |
+
"fitness=%{customdata[7]:.4f}<br>"
|
215 |
+
"accuracy=%{customdata[8]:.3f}<extra></extra>"
|
216 |
+
)
|
217 |
)
|
218 |
|
219 |
+
# Faint sphere
|
220 |
+
u = np.linspace(0, 2*np.pi, 64)
|
221 |
+
v = np.linspace(0, np.pi, 32)
|
222 |
+
r = 1.15
|
223 |
+
xs = r*np.outer(np.cos(u), np.sin(v))
|
224 |
+
ys = r*np.outer(np.sin(u), np.sin(v))
|
225 |
+
zs = r*np.outer(np.ones_like(u), np.cos(v))
|
226 |
+
sphere = go.Surface(x=xs, y=ys, z=zs, opacity=0.06, showscale=False)
|
227 |
|
228 |
layout = go.Layout(
|
229 |
title=f"Evo Sphere — Generation {gen_idx}",
|
230 |
scene=dict(xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False)),
|
231 |
margin=dict(l=0, r=0, t=40, b=0),
|
232 |
+
showlegend=False,
|
233 |
+
height=680
|
234 |
)
|
235 |
return go.Figure(data=[sphere, scatter], layout=layout)
|
236 |
|
237 |
+
def make_history_figure(history: List[Tuple[int,float,float]], metric: str) -> go.Figure:
|
238 |
+
# history items: (gen, best_fitness, best_acc or NaN)
|
239 |
xs = [h[0] for h in history]
|
240 |
+
if metric == "Accuracy":
|
241 |
+
ys = [h[2] if (h[2] == h[2]) else None for h in history] # keep None for Demo
|
242 |
+
title, ylab = "Best Accuracy per Generation", "Accuracy"
|
243 |
+
else:
|
244 |
+
ys = [h[1] for h in history]
|
245 |
+
title, ylab = "Best Fitness per Generation", "Fitness (lower is better)"
|
246 |
fig = go.Figure(data=[go.Scatter(x=xs, y=ys, mode="lines+markers")])
|
247 |
+
fig.update_layout(title=title, xaxis_title="Generation", yaxis_title=ylab,
|
248 |
+
margin=dict(l=30,r=10,t=40,b=30), height=360)
|
|
|
249 |
return fig
|
250 |
|
251 |
def approx_params(g: Genome) -> int:
|
|
|
|
|
252 |
per_layer = (4.0 + 2.0 * float(g.ffn_mult)) * (g.d_model ** 2)
|
253 |
+
total = per_layer * g.n_layers + 1000 * g.memory_tokens
|
|
|
254 |
return int(total)
|
255 |
|
256 |
# =========================
|
|
|
263 |
self.stop_flag = False
|
264 |
self.state: Dict[str, Any] = {}
|
265 |
|
266 |
+
def run(self, dataset, pop_size, generations, mutation_rate, explore, exploit, seed, pace_ms, metric_choice):
|
267 |
rng = random.Random(int(seed))
|
268 |
self.stop_flag = False
|
269 |
self.running = True
|
|
|
271 |
pop: List[Genome] = [random_genome(rng) for _ in range(pop_size)]
|
272 |
# initial eval
|
273 |
for g in pop:
|
274 |
+
fit, acc = evaluate_genome(g, dataset, explore)
|
275 |
+
g.fitness, g.acc = fit, acc
|
276 |
|
277 |
+
history: List[Tuple[int,float,float]] = [] # (gen, best_fitness, best_acc or NaN)
|
278 |
best_overall: Optional[Genome] = None
|
279 |
|
280 |
for gen in range(1, generations+1):
|
281 |
if self.stop_flag: break
|
282 |
|
283 |
+
# Selection (tournament)
|
284 |
k = max(2, int(2 + exploit * 5))
|
285 |
parents = []
|
286 |
for _ in range(pop_size):
|
|
|
290 |
# Reproduce
|
291 |
children = []
|
292 |
for i in range(0, pop_size, 2):
|
293 |
+
a = parents[i]; b = parents[(i+1) % pop_size]
|
|
|
294 |
child1 = mutate(crossover(a,b,rng), rng, mutation_rate)
|
295 |
child2 = mutate(crossover(b,a,rng), rng, mutation_rate)
|
296 |
children.extend([child1, child2])
|
297 |
children = children[:pop_size]
|
298 |
|
299 |
+
# Evaluate children
|
300 |
for c in children:
|
301 |
+
fit, acc = evaluate_genome(c, dataset, explore)
|
302 |
+
c.fitness, c.acc = fit, acc
|
303 |
|
304 |
# Elitism
|
305 |
elite_n = max(1, pop_size // 10)
|
|
|
313 |
if best_overall is None or best.fitness < best_overall.fitness:
|
314 |
best_overall = best
|
315 |
|
316 |
+
history.append((gen, best.fitness, (best.acc if best.acc is not None else float("nan"))))
|
317 |
|
318 |
# Viz snapshot
|
319 |
P = np.stack([g.vector() for g in pop], axis=0)
|
320 |
P3 = sphere_project(P)
|
321 |
sphere_fig = make_sphere_figure(P3, pop, gen)
|
322 |
+
hist_fig = make_history_figure(history, metric_choice)
|
323 |
top = sorted(pop, key=lambda x: x.fitness)[: min(12, len(pop))]
|
324 |
top_table = [
|
325 |
{
|
326 |
"gen": gen,
|
327 |
"fitness": round(t.fitness, 4),
|
328 |
+
"accuracy": (None if t.acc is None else round(float(t.acc), 4)),
|
329 |
"d_model": t.d_model,
|
330 |
"layers": t.n_layers,
|
331 |
"heads": t.n_heads,
|
|
|
345 |
"top": top_table,
|
346 |
"best": best_card,
|
347 |
"gen": gen,
|
348 |
+
"dataset": dataset,
|
349 |
+
"metric": metric_choice
|
350 |
}
|
351 |
|
352 |
time.sleep(max(0.0, pace_ms/1000.0))
|
|
|
358 |
t = threading.Thread(target=self.run, args=args, kwargs=kwargs, daemon=True)
|
359 |
t.start()
|
360 |
|
361 |
+
def stop(self): self.stop_flag = True
|
|
|
362 |
|
363 |
runner = EvoRunner()
|
364 |
|
365 |
# =========================
|
366 |
+
# UI CALLBACKS
|
367 |
# =========================
|
368 |
+
def start_evo(dataset, pop, gens, mut, explore, exploit, seed, pace_ms, metric_choice):
|
369 |
+
runner.start(dataset, int(pop), int(gens), float(mut), float(explore), float(exploit), int(seed), int(pace_ms), metric_choice)
|
370 |
return (gr.update(interactive=False), gr.update(interactive=True))
|
371 |
|
372 |
def stop_evo():
|
|
|
377 |
with runner.lock:
|
378 |
s = runner.state.copy()
|
379 |
sphere = s.get("sphere", go.Figure())
|
380 |
+
history = s.get("history", go.Figure()) # already built by runner
|
381 |
best = s.get("best", {})
|
382 |
gen = s.get("gen", 0)
|
383 |
dataset = s.get("dataset", "Demo (Surrogate)")
|
384 |
top = s.get("top", [])
|
385 |
+
# Stats text
|
386 |
if best:
|
387 |
+
acc_txt = "—" if best.get("accuracy") is None else f"{best.get('accuracy'):.3f}"
|
388 |
stats_md = (
|
389 |
f"**Dataset:** {dataset} \n"
|
390 |
f"**Generation:** {gen} \n"
|
391 |
f"**Best fitness:** {best.get('fitness','–')} \n"
|
392 |
+
f"**Best accuracy:** {acc_txt} \n"
|
393 |
f"**Config:** d_model={best.get('d_model')} · layers={best.get('layers')} · "
|
394 |
f"heads={best.get('heads')} · ffn_mult={best.get('ffn_mult')} · mem={best.get('mem')} · "
|
395 |
f"dropout={best.get('dropout')} \n"
|
|
|
410 |
return path
|
411 |
|
412 |
# =========================
|
413 |
+
# BUILD UI (bigger sphere, metric toggle)
|
414 |
# =========================
|
415 |
with gr.Blocks(theme=gr.themes.Soft(), css=CUSTOM_CSS) as demo:
|
416 |
with gr.Column(elem_id="header-card"):
|
417 |
gr.Markdown(
|
418 |
+
"# Evo Playground — Live Evolution of Transformer Architectures\n"
|
419 |
+
"Tune the search, watch the population converge, and track **accuracy** in real time (PIQA/HellaSwag)."
|
|
|
420 |
)
|
421 |
|
422 |
with gr.Row():
|
|
|
425 |
with gr.Group():
|
426 |
dataset = gr.Dropdown(
|
427 |
label="Dataset",
|
428 |
+
choices=["Demo (Surrogate)", "PIQA (Phase 2)", "HellaSwag (Phase 2)"],
|
429 |
value="Demo (Surrogate)",
|
430 |
+
info="PIQA/HellaSwag compute real proxy accuracy; Demo uses a fast surrogate."
|
431 |
)
|
432 |
pop = gr.Slider(8, 80, value=24, step=2, label="Population size")
|
433 |
gens = gr.Slider(5, 200, value=60, step=1, label="Max generations")
|
|
|
437 |
exploit = gr.Slider(0.0, 1.0, value=0.65, step=0.05, label="Exploitation")
|
438 |
seed = gr.Number(value=42, label="Seed", precision=0)
|
439 |
pace = gr.Slider(0, 1000, value=120, step=10, label="Pace (ms between gens)")
|
440 |
+
metric_choice = gr.Radio(choices=["Accuracy", "Fitness"], value="Accuracy", label="History Metric")
|
441 |
with gr.Row():
|
442 |
start = gr.Button("▶ Start Evolution", variant="primary")
|
443 |
stop = gr.Button("⏹ Stop", variant="secondary")
|
444 |
|
445 |
with gr.Group(elem_id="right-card"):
|
446 |
+
stats_md = gr.Markdown("Waiting…", elem_id="stats-md")
|
447 |
export_btn = gr.Button("Export Snapshot (JSON)")
|
448 |
export_file = gr.File(label="Download snapshot", visible=False)
|
449 |
|
|
|
452 |
with gr.Group(elem_id="viz-card"):
|
453 |
sphere_plot = gr.Plot(label="Evolution Sphere")
|
454 |
with gr.Group(elem_id="viz-card"):
|
455 |
+
hist_plot = gr.Plot(label="Progress")
|
456 |
with gr.Group(elem_id="table-card"):
|
457 |
top_df = gr.Dataframe(label="Top Genomes (live)", wrap=True, interactive=False)
|
458 |
|
459 |
# Wiring
|
460 |
+
start.click(start_evo, [dataset, pop, gens, mut, explore, exploit, seed, pace, metric_choice], [start, stop])
|
461 |
stop.click(stop_evo, [], [start, stop])
|
462 |
export_btn.click(export_snapshot, [], [export_file])
|
463 |
|
464 |
+
# Initial paint
|
465 |
demo.load(poll_state, None, [sphere_plot, hist_plot, stats_md, top_df])
|
466 |
|
467 |
# Continuous polling (every 0.7s)
|