# app.py — Enhanced UI + stable backend (idle sphere, Clear, inline Plotly, accuracy)
import math, random, time, threading
from dataclasses import dataclass, asdict
from typing import List, Tuple, Dict, Any, Optional
from functools import lru_cache
import numpy as np
import plotly.graph_objs as go
import plotly.io as pio
import gradio as gr
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from data_utils import load_piqa, load_hellaswag, hash_vectorize
# =========================
# ENHANCED CSS
# =========================
ENHANCED_CSS = """
:root {
--radius: 14px;
--fg: #E5E7EB;
--muted: #94A3B8;
--line: #1f2b36;
--bg: #0F1A24;
--panel-bg: #0c161f;
--accent: #3B82F6;
--accent-hover: #2563EB;
--danger: #EF4444;
}
.gradio-container {
max-width: 1400px !important;
background: var(--bg);
padding: 16px !important;
}
#header {
padding: 16px 0;
margin-bottom: 16px;
border-bottom: 1px solid var(--line);
}
h1, h2, h3, .gr-markdown {
color: var(--fg);
}
.gr-button {
border-radius: 8px;
padding: 8px 16px;
transition: all 0.2s ease;
font-weight: 500 !important;
}
.btn-primary {
background: var(--accent) !important;
border: 1px solid var(--accent) !important;
}
.btn-primary:hover { background: var(--accent-hover) !important; }
.btn-secondary {
background: transparent !important;
border: 1px solid var(--line) !important;
}
.btn-danger {
background: var(--danger) !important;
border: 1px solid var(--danger) !important;
}
.control-group {
border: 1px solid var(--line);
border-radius: var(--radius);
background: var(--panel-bg);
padding: 20px;
margin-bottom: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
}
.panel {
border: 1px solid var(--line);
border-radius: var(--radius);
background: var(--panel-bg);
padding: 20px;
margin-bottom: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
}
.stats-panel {
background: linear-gradient(145deg, #0a121b, #0c161f);
border-left: 3px solid var(--accent);
}
#stats {
color: var(--fg);
line-height: 1.6;
}
#stats strong {
font-weight: 500;
color: var(--accent);
}
.param-slider { margin-bottom: 12px; }
.visualization-container {
display: flex;
flex-direction: column;
gap: 20px;
height: 100%;
}
.viz-panel { flex: 1; min-height: 300px; }
.viz-header {
display: flex;
justify-content: space-between;
align-items: center;
margin-bottom: 12px;
padding-bottom: 8px;
border-bottom: 1px solid var(--line);
}
.viz-title {
font-size: 1.1rem;
font-weight: 500;
color: var(--accent);
}
.gen-counter {
font-size: 0.9rem;
background: rgba(59, 130, 246, 0.15);
padding: 4px 10px;
border-radius: 12px;
}
.slider-info {
display: flex;
justify-content: space-between;
font-size: 0.85rem;
color: var(--muted);
margin-top: 4px;
}
.controls-grid {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 16px;
}
@media (max-width: 1200px) { .controls-grid { grid-template-columns: 1fr; } }
.data-table { max-height: 400px; overflow-y: auto; }
.data-table table {
width: 100%;
border-collapse: collapse;
}
.data-table th {
background: rgba(15, 26, 36, 0.8);
position: sticky;
top: 0;
text-align: left;
padding: 10px 12px;
font-weight: 500;
color: var(--accent);
border-bottom: 1px solid var(--line);
}
.data-table td {
padding: 8px 12px;
border-bottom: 1px solid rgba(31, 43, 54, 0.5);
}
.data-table tr:hover { background: rgba(31, 43, 54, 0.3); }
.action-buttons { display: flex; gap: 12px; margin-top: 20px; }
.footer {
margin-top: 20px;
padding-top: 20px;
border-top: 1px solid var(--line);
font-size: 0.85rem;
color: var(--muted);
text-align: center;
}
"""
# =========================
# GENOME + EVOLUTION CORE
# =========================
@dataclass
class Genome:
d_model: int
n_layers: int
n_heads: int
ffn_mult: float
memory_tokens: int
dropout: float
species: int = 0
fitness: float = float("inf")
acc: Optional[float] = None
def vector(self) -> np.ndarray:
return np.array([
self.d_model / 1024.0,
self.n_layers / 24.0,
self.n_heads / 32.0,
self.ffn_mult / 8.0,
self.memory_tokens / 64.0,
self.dropout / 0.5
], dtype=np.float32)
def random_genome(rng: random.Random) -> Genome:
return Genome(
d_model=rng.choice([256, 384, 512, 640]),
n_layers=rng.choice([4, 6, 8, 10, 12]),
n_heads=rng.choice([4, 6, 8, 10, 12]),
ffn_mult=rng.choice([2.0, 3.0, 4.0, 6.0]),
memory_tokens=rng.choice([0, 4, 8, 16]),
dropout=rng.choice([0.0, 0.05, 0.1, 0.15]),
species=rng.randrange(5)
)
def mutate(g: Genome, rng: random.Random, rate: float) -> Genome:
g = Genome(**asdict(g))
if rng.random() < rate: g.d_model = rng.choice([256, 384, 512, 640])
if rng.random() < rate: g.n_layers = rng.choice([4, 6, 8, 10, 12])
if rng.random() < rate: g.n_heads = rng.choice([4, 6, 8, 10, 12])
if rng.random() < rate: g.ffn_mult = rng.choice([2.0, 3.0, 4.0, 6.0])
if rng.random() < rate: g.memory_tokens = rng.choice([0, 4, 8, 16])
if rng.random() < rate: g.dropout = rng.choice([0.0, 0.05, 0.1, 0.15])
if rng.random() < rate * 0.5: g.species = rng.randrange(5)
g.fitness = float("inf"); g.acc = None
return g
def crossover(a: Genome, b: Genome, rng: random.Random) -> Genome:
return Genome(
d_model = a.d_model if rng.random()<0.5 else b.d_model,
n_layers = a.n_layers if rng.random()<0.5 else b.n_layers,
n_heads = a.n_heads if rng.random()<0.5 else b.n_heads,
ffn_mult = a.ffn_mult if rng.random()<0.5 else b.ffn_mult,
memory_tokens = a.memory_tokens if rng.random()<0.5 else b.memory_tokens,
dropout = a.dropout if rng.random()<0.5 else b.dropout,
species = a.species if rng.random()<0.5 else b.species,
fitness = float("inf"), acc=None
)
# =========================
# PROXY FITNESS
# =========================
def rastrigin(x: np.ndarray) -> float:
A, n = 10.0, x.shape[0]
return A * n + np.sum(x**2 - A * np.cos(2 * math.pi * x))
class TinyMLP(nn.Module):
def __init__(self, in_dim: int, genome: Genome):
super().__init__()
h1 = max(64, int(0.25 * genome.d_model))
h2 = max(32, int(genome.ffn_mult * 32))
self.net = nn.Sequential(
nn.Linear(in_dim, h1), nn.ReLU(),
nn.Linear(h1, h2), nn.ReLU(),
nn.Linear(h2, 1)
)
def forward(self, x): return self.net(x).squeeze(-1)
@lru_cache(maxsize=4)
def _cached_dataset(name: str):
try:
if name.startswith("PIQA"): return load_piqa(subset=800, seed=42)
if name.startswith("HellaSwag"): return load_hellaswag(subset=800, seed=42)
except Exception:
return None
return None
def _train_eval_proxy(genome: Genome, dataset_name: str, explore: float, device: str="cpu"):
data = _cached_dataset(dataset_name)
if data is None:
# Fallback to surrogate so UI still runs
v = genome.vector() * 2 - 1
base = rastrigin(v)
parsimony = 0.001 * (genome.d_model + 50*genome.n_layers + 20*genome.n_heads + 100*genome.memory_tokens)
noise = np.random.normal(scale=0.05 * max(0.0, min(1.0, explore)))
return float(base + parsimony + noise), None
Xtr_txt, ytr, Xva_txt, yva = data
nfeat = 4096
Xtr = hash_vectorize(Xtr_txt, n_features=nfeat, seed=1234)
Xva = hash_vectorize(Xva_txt, n_features=nfeat, seed=5678)
Xtr_t = torch.from_numpy(Xtr); ytr_t = torch.from_numpy(ytr.astype(np.float32))
Xva_t = torch.from_numpy(Xva); yva_t = torch.from_numpy(yva.astype(np.float32))
model = TinyMLP(nfeat, genome).to(device)
opt = optim.AdamW(model.parameters(), lr=2e-3)
lossf = nn.BCEWithLogitsLoss()
model.train(); steps, bs, N = 120, 256, Xtr_t.size(0)
for _ in range(steps):
idx = torch.randint(0, N, (bs,))
xb = Xtr_t[idx].to(device); yb = ytr_t[idx].to(device)
logits = model(xb); loss = lossf(logits, yb)
opt.zero_grad(); loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
opt.step()
model.eval()
with torch.no_grad():
logits = model(Xva_t.to(device))
probs = torch.sigmoid(logits).cpu().numpy()
if dataset_name.startswith("PIQA"):
probs = probs.reshape(-1,2); yva2 = yva.reshape(-1,2)
pred = (probs[:,0] > probs[:,1]).astype(np.int64)
truth = (yva2[:,0] == 1).astype(np.int64)
acc = float((pred == truth).mean())
else:
probs = probs.reshape(-1,4); yva2 = yva.reshape(-1,4)
pred = probs.argmax(axis=1); truth = yva2.argmax(axis=1)
acc = float((pred == truth).mean())
parsimony = 0.00000002 * (genome.d_model**2 * genome.n_layers) + 0.0001 * genome.memory_tokens
noise = np.random.normal(scale=0.01 * max(0.0, min(1.0, explore)))
fitness = (1.0 - acc) + parsimony + noise
return float(max(0.0, min(1.5, fitness))), float(acc)
def evaluate_genome(genome: Genome, dataset: str, explore: float):
if dataset == "Demo (Surrogate)":
v = genome.vector() * 2 - 1
base = rastrigin(v)
parsimony = 0.001 * (genome.d_model + 50*genome.n_layers + 20*genome.n_heads + 100*genome.memory_tokens)
noise = np.random.normal(scale=0.05 * max(0.0, min(1.0, explore)))
return float(base + parsimony + noise), None
if dataset.startswith("PIQA"): return _train_eval_proxy(genome, "PIQA", explore)
if dataset.startswith("HellaSwag"): return _train_eval_proxy(genome, "HellaSwag", explore)
v = genome.vector() * 2 - 1
return float(rastrigin(v)), None
# =========================
# VIZ — idle sphere, big transparent surface
# =========================
BG = "#0F1A24"
DOT = "#93C5FD"
SPHERE = "#cbd5e1"
def sphere_project(points: np.ndarray) -> np.ndarray:
rng = np.random.RandomState(42)
W = rng.normal(size=(points.shape[1], 3)).astype(np.float32)
Y = points @ W
norms = np.linalg.norm(Y, axis=1, keepdims=True) + 1e-8
return (Y / norms) * 1.22
def make_idle_sphere() -> go.Figure:
u = np.linspace(0, 2*np.pi, 72)
v = np.linspace(0, np.pi, 36)
r = 1.22
xs = r*np.outer(np.cos(u), np.sin(v))
ys = r*np.outer(np.sin(u), np.sin(v))
zs = r*np.outer(np.ones_like(u), np.cos(v))
sphere = go.Surface(
x=xs, y=ys, z=zs,
opacity=0.06, showscale=False,
colorscale=[[0, SPHERE],[1, SPHERE]],
hoverinfo="skip"
)
layout = go.Layout(
paper_bgcolor=BG, plot_bgcolor=BG,
title=dict(text="Architecture Space (idle)", font=dict(color="#E5E7EB")),
scene=dict(
xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False),
bgcolor=BG
),
margin=dict(l=0, r=0, t=36, b=0), showlegend=False, height=720,
font=dict(family="Inter, Arial, sans-serif", size=14, color="#E5E7EB")
)
return go.Figure(data=[sphere], layout=layout)
def make_sphere_figure(points3d: np.ndarray, genomes: List[Genome], gen_idx: int) -> go.Figure:
custom = np.array([[g.d_model, g.n_layers, g.n_heads, g.ffn_mult, g.memory_tokens, g.dropout,
g.species, g.fitness, (g.acc if g.acc is not None else -1.0)]
for g in genomes], dtype=np.float32)
scatter = go.Scatter3d(
x=points3d[:,0], y=points3d[:,1], z=points3d[:,2],
mode='markers',
marker=dict(size=7.0, color=DOT, opacity=0.92),
customdata=custom,
hovertemplate=(
"Genome
"
"d_model=%{customdata[0]:.0f} · layers=%{customdata[1]:.0f} · heads=%{customdata[2]:.0f}
"
"ffn_mult=%{customdata[3]:.1f} · mem=%{customdata[4]:.0f} · drop=%{customdata[5]:.2f}
"
"fitness=%{customdata[7]:.4f} · acc=%{customdata[8]:.3f}"
)
)
idle = make_idle_sphere()
fig = go.Figure(data=idle.data + (scatter,), layout=idle.layout)
fig.update_layout(title=dict(text=f"Evo Architecture Space — Gen {gen_idx}"))
return fig
def make_history_figure(history: List[Tuple[int,float,float]], metric: str) -> go.Figure:
xs = [h[0] for h in history]
if metric == "Accuracy":
ys = [h[2] if (h[2] == h[2]) else None for h in history]
title, ylab = "Best Accuracy per Generation", "Accuracy"
else:
ys = [h[1] for h in history]
title, ylab = "Best Fitness per Generation", "Fitness (↓ better)"
fig = go.Figure(data=[go.Scatter(x=xs, y=ys, mode="lines+markers", line=dict(width=2), marker=dict(color=DOT))])
fig.update_layout(
paper_bgcolor=BG, plot_bgcolor=BG, font=dict(color="#E5E7EB"),
title=dict(text=title), xaxis_title="Generation", yaxis_title=ylab,
margin=dict(l=30, r=10, t=36, b=30), height=340
)
fig.update_xaxes(gridcolor="#1f2b36"); fig.update_yaxes(gridcolor="#1f2b36")
return fig
def fig_to_html(fig: go.Figure) -> str:
# Inline Plotly JS so it renders even without CDN
return pio.to_html(fig, include_plotlyjs=True, full_html=False, config=dict(displaylogo=False))
def approx_params(g: Genome) -> int:
per_layer = (4.0 + 2.0 * float(g.ffn_mult)) * (g.d_model ** 2)
total = per_layer * g.n_layers + 1000 * g.memory_tokens
return int(total)
# =========================
# RUNNER
# =========================
class EvoRunner:
def __init__(self):
self.lock = threading.Lock()
self.running = False
self.stop_flag = False
self.state: Dict[str, Any] = {}
# Seed idle visuals
idle = fig_to_html(make_idle_sphere())
self.state = {
"sphere_html": idle,
"history_html": fig_to_html(make_history_figure([], "Accuracy")),
"top": [], "best": {}, "gen": 0,
"dataset": "Demo (Surrogate)", "metric": "Accuracy"
}
def run(self, dataset, pop_size, generations, mutation_rate, explore, exploit, seed, pace_ms, metric_choice):
rng = random.Random(int(seed))
self.stop_flag = False
self.running = True
pop: List[Genome] = [random_genome(rng) for _ in range(pop_size)]
for g in pop:
fit, acc = evaluate_genome(g, dataset, explore)
g.fitness, g.acc = fit, acc
history: List[Tuple[int,float,float]] = []
for gen in range(1, generations+1):
if self.stop_flag: break
k = max(2, int(2 + exploit * 5))
parents = [min(rng.sample(pop, k=k), key=lambda x: x.fitness) for _ in range(pop_size)]
children = []
for i in range(0, pop_size, 2):
a = parents[i]; b = parents[(i+1) % pop_size]
child1 = mutate(crossover(a,b,rng), rng, mutation_rate)
child2 = mutate(crossover(b,a,rng), rng, mutation_rate)
children.extend([child1, child2])
children = children[:pop_size]
for c in children:
fit, acc = evaluate_genome(c, dataset, explore)
c.fitness, c.acc = fit, acc
elite_n = max(1, pop_size // 10)
elites = sorted(pop, key=lambda x: x.fitness)[:elite_n]
pop = sorted(children, key=lambda x: x.fitness)
pop[-elite_n:] = elites
best = min(pop, key=lambda x: x.fitness)
history.append((gen, best.fitness, (best.acc if best.acc is not None else float("nan"))))
P = np.stack([g.vector() for g in pop], axis=0)
P3 = sphere_project(P)
sphere_fig = make_sphere_figure(P3, pop, gen)
hist_fig = make_history_figure(history, metric_choice)
top = sorted(pop, key=lambda x: x.fitness)[: min(12, len(pop))]
top_table = [{
"gen": gen, "fitness": round(t.fitness, 4),
"accuracy": (None if t.acc is None else round(float(t.acc), 4)),
"d_model": t.d_model, "layers": t.n_layers, "heads": t.n_heads,
"ffn_mult": t.ffn_mult, "mem": t.memory_tokens, "dropout": t.dropout,
"params_approx": approx_params(t)
} for t in top]
best_card = top_table[0] if top_table else {}
with self.lock:
self.state = {
"sphere_html": fig_to_html(sphere_fig),
"history_html": fig_to_html(hist_fig),
"top": top_table,
"best": best_card,
"gen": gen,
"dataset": dataset,
"metric": metric_choice
}
time.sleep(max(0.0, pace_ms/1000.0))
self.running = False
def start(self, *args, **kwargs):
if self.running: return
t = threading.Thread(target=self.run, args=args, kwargs=kwargs, daemon=True)
t.start()
def stop(self): self.stop_flag = True
def clear(self):
# stop and reset to idle sphere
self.stop_flag = True
idle = fig_to_html(make_idle_sphere())
with self.lock:
self.running = False
self.state = {
"sphere_html": idle,
"history_html": fig_to_html(make_history_figure([], "Accuracy")),
"top": [], "best": {}, "gen": 0,
"dataset": "Demo (Surrogate)", "metric": "Accuracy"
}
runner = EvoRunner()
# =========================
# UI CALLBACKS
# =========================
def start_evo(dataset, pop, gens, mut, explore, exploit, seed, pace_ms, metric_choice):
runner.start(dataset, int(pop), int(gens), float(mut), float(explore), float(exploit), int(seed), int(pace_ms), metric_choice)
return (gr.update(interactive=False), gr.update(interactive=True), gr.update(interactive=False))
def stop_evo():
runner.stop()
return (gr.update(interactive=True), gr.update(interactive=False), gr.update(interactive=True))
def clear_evo():
runner.clear()
sphere_html, history_html, stats_md, df, gen_counter_md = poll_state()
return sphere_html, history_html, stats_md, df, gen_counter_md, gr.update(interactive=True), gr.update(interactive=False), gr.update(interactive=True)
def poll_state():
with runner.lock:
s = runner.state.copy()
sphere_html = s.get("sphere_html", "")
history_html = s.get("history_html", "")
best = s.get("best", {})
gen = s.get("gen", 0)
dataset = s.get("dataset", "Demo (Surrogate)")
top = s.get("top", [])
if best:
acc_txt = "—" if best.get("accuracy") is None else f"{best.get('accuracy'):.3f}"
stats_md = (
f"**Dataset:** {dataset} \n"
f"**Generation:** {gen} \n"
f"**Best fitness:** {best.get('fitness','–')} \n"
f"**Best accuracy:** {acc_txt} \n"
f"**Config:** d_model={best.get('d_model')} · layers={best.get('layers')} · "
f"heads={best.get('heads')} · ffn_mult={best.get('ffn_mult')} · mem={best.get('mem')} · "
f"dropout={best.get('dropout')} \n"
f"**~Params (rough):** {best.get('params_approx'):,}"
)
else:
stats_md = "Ready. Press **Start** to begin evolution."
df = pd.DataFrame(top)
gen_counter_md = f"Gen **{gen}**"
return sphere_html, history_html, stats_md, df, gen_counter_md
def export_snapshot():
from json import dumps
with runner.lock:
payload = dumps(runner.state, default=lambda o: o, indent=2)
path = "evo_snapshot.json"
with open(path, "w", encoding="utf-8") as f:
f.write(payload)
return path
# =========================
# BUILD ENHANCED UI
# =========================
with gr.Blocks(css=ENHANCED_CSS, theme=gr.themes.Default()) as demo:
# Header
with gr.Column(elem_id="header"):
gr.Markdown("## 🧬 Neuroevolution Playground")
gr.Markdown("Evolve neural architectures using genetic algorithms")
with gr.Row():
# Left Panel - Controls
with gr.Column(scale=1):
# Parameters Group
with gr.Group(elem_classes=["control-group"]):
gr.Markdown("### 🛠 Evolution Parameters")
with gr.Column():
dataset = gr.Dropdown(
label="Evaluation Dataset",
choices=["Demo (Surrogate)", "PIQA (Phase 2)", "HellaSwag (Phase 2)"],
value="Demo (Surrogate)",
info="Dataset used for fitness evaluation"
)
with gr.Row():
with gr.Column():
pop = gr.Slider(8, 80, value=24, step=2, label="Population Size", elem_classes=["param-slider"])
gens = gr.Slider(5, 200, value=60, step=1, label="Max Generations", elem_classes=["param-slider"])
mut = gr.Slider(0.05, 0.9, value=0.25, step=0.01, label="Mutation Rate", elem_classes=["param-slider"])
with gr.Column():
explore = gr.Slider(0.0, 1.0, value=0.35, step=0.05, label="Exploration", elem_classes=["param-slider"])
exploit = gr.Slider(0.0, 1.0, value=0.65, step=0.05, label="Exploitation", elem_classes=["param-slider"])
seed = gr.Number(value=42, label="Random Seed", precision=0)
pace = gr.Slider(0, 1000, value=120, step=10, label="Simulation Speed (ms)", elem_classes=["param-slider"])
metric_choice = gr.Radio(choices=["Accuracy", "Fitness"], value="Accuracy", label="History Metric Display")
# Status Panel
with gr.Group(elem_classes=["panel", "stats-panel"]):
gr.Markdown("### 📊 Current Status")
stats_md = gr.Markdown("Ready. Press **Start** to begin evolution.", elem_id="stats")
# Action Buttons
with gr.Row(elem_classes=["action-buttons"]):
start = gr.Button("▶ Start Evolution", variant="primary", elem_classes=["btn-primary"])
stop = gr.Button("⏹ Stop", variant="secondary", elem_classes=["btn-danger"], interactive=False)
clear = gr.Button("↻ Reset", elem_classes=["btn-secondary"])
# Export
with gr.Group(elem_classes=["panel"]):
gr.Markdown("### 💾 Export Results")
with gr.Row():
export_btn = gr.Button("Save Snapshot (JSON)")
export_file = gr.File(label="Download snapshot", visible=False)
# Right Panel - Visualizations
with gr.Column(scale=2):
# 3D Visualization
with gr.Group(elem_classes=["panel", "viz-panel"]):
with gr.Column(elem_classes=["viz-header"]):
with gr.Row():
gr.Markdown("### 🌐 Architecture Space", elem_classes=["viz-title"])
gen_counter = gr.Markdown("", elem_classes=["gen-counter"])
sphere_html = gr.HTML()
# History Visualization
with gr.Group(elem_classes=["panel", "viz-panel"]):
with gr.Column(elem_classes=["viz-header"]):
gr.Markdown("### 📈 Performance History", elem_classes=["viz-title"])
hist_html = gr.HTML()
# Results Table
with gr.Group(elem_classes=["panel"]):
gr.Markdown("### 🏆 Top Genomes")
with gr.Column(elem_classes=["data-table"]):
top_df = gr.Dataframe(label="", wrap=True, interactive=False)
# Footer
with gr.Column(elem_classes=["footer"]):
gr.Markdown("Neuroevolution Playground v1.0 • Plotly + Gradio")
# Wiring
start.click(
start_evo,
[dataset, pop, gens, mut, explore, exploit, seed, pace, metric_choice],
[start, stop, clear]
)
stop.click(stop_evo, [], [start, stop, clear])
clear.click(
clear_evo,
[],
[sphere_html, hist_html, stats_md, top_df, gen_counter, start, stop, clear]
)
export_btn.click(export_snapshot, [], [export_file])
# State polling
demo.load(poll_state, None, [sphere_html, hist_html, stats_md, top_df, gen_counter])
gr.Timer(0.7).tick(poll_state, None, [sphere_html, hist_html, stats_md, top_df, gen_counter])
if __name__ == "__main__":
demo.launch()