Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,18 +4,13 @@ from RealESRGAN import RealESRGAN
|
|
4 |
import gradio as gr
|
5 |
|
6 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
7 |
-
model2 = RealESRGAN(device, scale=2)
|
8 |
-
model2.load_weights('weights/RealESRGAN_x2.pth', download=True)
|
9 |
-
model4 = RealESRGAN(device, scale=4)
|
10 |
-
model4.load_weights('weights/RealESRGAN_x4.pth', download=True)
|
11 |
-
model8 = RealESRGAN(device, scale=8)
|
12 |
-
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
|
13 |
|
|
|
|
|
|
|
|
|
14 |
|
15 |
def inference(image, size):
|
16 |
-
global model2
|
17 |
-
global model4
|
18 |
-
global model8
|
19 |
if image is None:
|
20 |
raise gr.Error("Image not uploaded")
|
21 |
|
@@ -26,48 +21,28 @@ def inference(image, size):
|
|
26 |
if torch.cuda.is_available():
|
27 |
torch.cuda.empty_cache()
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
try:
|
39 |
-
result = model4.predict(image.convert('RGB'))
|
40 |
-
except torch.cuda.OutOfMemoryError as e:
|
41 |
-
print(e)
|
42 |
-
model4 = RealESRGAN(device, scale=4)
|
43 |
-
model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
|
44 |
-
result = model2.predict(image.convert('RGB'))
|
45 |
-
else:
|
46 |
-
try:
|
47 |
-
result = model8.predict(image.convert('RGB'))
|
48 |
-
except torch.cuda.OutOfMemoryError as e:
|
49 |
-
print(e)
|
50 |
-
model8 = RealESRGAN(device, scale=8)
|
51 |
-
model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
|
52 |
-
result = model2.predict(image.convert('RGB'))
|
53 |
|
54 |
print(f"Image size ({device}): {size} ... OK")
|
55 |
return result
|
56 |
|
57 |
-
|
58 |
title = "RealESRGAN UpScale Model: 2x 4x 8x"
|
59 |
-
description = "This model running on
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
description=description,
|
71 |
-
allow_flagging='never',
|
72 |
-
cache_examples=False,
|
73 |
-
).queue(api_open=False).launch(show_error=True, show_api=False)
|
|
|
4 |
import gradio as gr
|
5 |
|
6 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
def load_model(scale):
|
9 |
+
model = RealESRGAN(device, scale=scale)
|
10 |
+
model.load_weights(f'weights/RealESRGAN_x{scale}.pth', download=True)
|
11 |
+
return model
|
12 |
|
13 |
def inference(image, size):
|
|
|
|
|
|
|
14 |
if image is None:
|
15 |
raise gr.Error("Image not uploaded")
|
16 |
|
|
|
21 |
if torch.cuda.is_available():
|
22 |
torch.cuda.empty_cache()
|
23 |
|
24 |
+
scale = int(size[0])
|
25 |
+
model = load_model(scale)
|
26 |
+
|
27 |
+
try:
|
28 |
+
result = model.predict(image.convert('RGB'))
|
29 |
+
except torch.cuda.OutOfMemoryError as e:
|
30 |
+
print(e)
|
31 |
+
model = load_model(scale)
|
32 |
+
result = model.predict(image.convert('RGB'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
print(f"Image size ({device}): {size} ... OK")
|
35 |
return result
|
36 |
|
|
|
37 |
title = "RealESRGAN UpScale Model: 2x 4x 8x"
|
38 |
+
description = "This model running on CPU so it takes a bit of time, please be patient :)"
|
39 |
+
|
40 |
+
gr.Interface(
|
41 |
+
inference,
|
42 |
+
[gr.Image(type="pil"), gr.Radio(['2x', '4x', '8x'], type="value", value='2x', label='Resolution model')],
|
43 |
+
gr.Image(type="pil", label="Output"),
|
44 |
+
title=title,
|
45 |
+
description=description,
|
46 |
+
allow_flagging='never',
|
47 |
+
cache_examples=False,
|
48 |
+
).queue(api_open=False).launch(show_error=True, show_api=False)
|
|
|
|
|
|
|
|