Spaces:
Runtime error
Runtime error
Create module_infer.py
Browse files- module_infer.py +135 -0
module_infer.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
class UVRWebUI:
|
2 |
+
def __init__(self, uvr: UVRInterface, online_data_path: str) -> None:
|
3 |
+
self.uvr = uvr
|
4 |
+
self.models_url = self.get_models_url(online_data_path)
|
5 |
+
self.define_layout()
|
6 |
+
|
7 |
+
self.input_temp_dir = "__temp"
|
8 |
+
self.export_path = "out"
|
9 |
+
if not os.path.exists(self.input_temp_dir):
|
10 |
+
os.mkdir(self.input_temp_dir)
|
11 |
+
|
12 |
+
def get_models_url(self, models_info_path: str) -> Dict[str, Dict]:
|
13 |
+
with open(models_info_path, "r") as f:
|
14 |
+
online_data = json.loads(f.read())
|
15 |
+
models_url = {}
|
16 |
+
for arch, download_list_key in zip([VR_ARCH_TYPE, MDX_ARCH_TYPE], ["vr_download_list", "mdx_download_list"]):
|
17 |
+
models_url[arch] = {model: NORMAL_REPO+model_path for model, model_path in online_data[download_list_key].items()}
|
18 |
+
models_url[DEMUCS_ARCH_TYPE] = online_data["demucs_download_list"]
|
19 |
+
return models_url
|
20 |
+
|
21 |
+
def get_local_models(self, arch: str) -> List[str]:
|
22 |
+
model_config = {
|
23 |
+
VR_ARCH_TYPE: (VR_MODELS_DIR, ".pth"),
|
24 |
+
MDX_ARCH_TYPE: (MDX_MODELS_DIR, ".onnx"),
|
25 |
+
DEMUCS_ARCH_TYPE: (DEMUCS_MODELS_DIR, ".yaml"),
|
26 |
+
}
|
27 |
+
try:
|
28 |
+
model_dir, suffix = model_config[arch]
|
29 |
+
except KeyError:
|
30 |
+
raise ValueError(f"Unkown arch type: {arch}")
|
31 |
+
return [os.path.splitext(f)[0] for f in os.listdir(model_dir) if f.endswith(suffix)]
|
32 |
+
|
33 |
+
def set_arch_setting_value(self, arch: str, setting1, setting2):
|
34 |
+
if arch == VR_ARCH_TYPE:
|
35 |
+
root.window_size_var.set(setting1)
|
36 |
+
root.aggression_setting_var.set(setting2)
|
37 |
+
elif arch == MDX_ARCH_TYPE:
|
38 |
+
root.mdx_batch_size_var.set(setting1)
|
39 |
+
root.compensate_var.set(setting2)
|
40 |
+
elif arch == DEMUCS_ARCH_TYPE:
|
41 |
+
pass
|
42 |
+
|
43 |
+
def arch_select_update(self, arch: str) -> List[Dict]:
|
44 |
+
choices = self.get_local_models(arch)
|
45 |
+
if arch == VR_ARCH_TYPE:
|
46 |
+
model_update = self.model_choice.update(choices=choices, value=CHOOSE_MODEL, label=SELECT_VR_MODEL_MAIN_LABEL)
|
47 |
+
setting1_update = self.arch_setting1.update(choices=VR_WINDOW, label=WINDOW_SIZE_MAIN_LABEL, value=root.window_size_var.get())
|
48 |
+
setting2_update = self.arch_setting2.update(choices=VR_AGGRESSION, label=AGGRESSION_SETTING_MAIN_LABEL, value=root.aggression_setting_var.get())
|
49 |
+
elif arch == MDX_ARCH_TYPE:
|
50 |
+
model_update = self.model_choice.update(choices=choices, value=CHOOSE_MODEL, label=CHOOSE_MDX_MODEL_MAIN_LABEL)
|
51 |
+
setting1_update = self.arch_setting1.update(choices=BATCH_SIZE, label=BATCHES_MDX_MAIN_LABEL, value=root.mdx_batch_size_var.get())
|
52 |
+
setting2_update = self.arch_setting2.update(choices=VOL_COMPENSATION, label=VOL_COMP_MDX_MAIN_LABEL, value=root.compensate_var.get())
|
53 |
+
elif arch == DEMUCS_ARCH_TYPE:
|
54 |
+
model_update = self.model_choice.update(choices=choices, value=CHOOSE_MODEL, label=CHOOSE_DEMUCS_MODEL_MAIN_LABEL)
|
55 |
+
raise gr.Error(f"{DEMUCS_ARCH_TYPE} not implempted")
|
56 |
+
else:
|
57 |
+
raise gr.Error(f"Unkown arch type: {arch}")
|
58 |
+
return [model_update, setting1_update, setting2_update]
|
59 |
+
|
60 |
+
def model_select_update(self, arch: str, model_name: str) -> List[Union[str, Dict, None]]:
|
61 |
+
if model_name == CHOOSE_MODEL:
|
62 |
+
return [None for _ in range(4)]
|
63 |
+
model, = self.uvr.assemble_model_data(model_name, arch)
|
64 |
+
if not model.model_status:
|
65 |
+
raise gr.Error(f"Cannot get model data, model hash = {model.model_hash}")
|
66 |
+
|
67 |
+
stem1_check_update = self.primary_stem_only.update(label=f"{model.primary_stem} Only")
|
68 |
+
stem2_check_update = self.secondary_stem_only.update(label=f"{model.secondary_stem} Only")
|
69 |
+
stem1_out_update = self.primary_stem_out.update(label=f"Output {model.primary_stem}")
|
70 |
+
stem2_out_update = self.secondary_stem_out.update(label=f"Output {model.secondary_stem}")
|
71 |
+
|
72 |
+
return [stem1_check_update, stem2_check_update, stem1_out_update, stem2_out_update]
|
73 |
+
|
74 |
+
def checkbox_set_root_value(self, checkbox: gr.Checkbox, root_attr: str):
|
75 |
+
checkbox.change(lambda value: root.__getattribute__(root_attr).set(value), inputs=checkbox)
|
76 |
+
|
77 |
+
def set_checkboxes_exclusive(self, checkboxes: List[gr.Checkbox], pure_callbacks: List[Callable], exclusive_value=True):
|
78 |
+
def exclusive_onchange(i, callback_i):
|
79 |
+
def new_onchange(*check_values):
|
80 |
+
if check_values[i] == exclusive_value:
|
81 |
+
return_values = []
|
82 |
+
for j, value_j in enumerate(check_values):
|
83 |
+
if j != i and value_j == exclusive_value:
|
84 |
+
return_values.append(not exclusive_value)
|
85 |
+
else:
|
86 |
+
return_values.append(value_j)
|
87 |
+
else:
|
88 |
+
return_values = check_values
|
89 |
+
callback_i(check_values[i])
|
90 |
+
return return_values
|
91 |
+
return new_onchange
|
92 |
+
|
93 |
+
for i, (checkbox, callback) in enumerate(zip(checkboxes, pure_callbacks)):
|
94 |
+
checkbox.change(exclusive_onchange(i, callback), inputs=checkboxes, outputs=checkboxes)
|
95 |
+
|
96 |
+
def process(self, input_audio, input_filename, model_name, arch, setting1, setting2, progress=gr.Progress()):
|
97 |
+
def set_progress_func(step, inference_iterations=0):
|
98 |
+
progress_curr = step + inference_iterations
|
99 |
+
progress(progress_curr)
|
100 |
+
|
101 |
+
sampling_rate, audio = input_audio
|
102 |
+
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
103 |
+
if len(audio.shape) > 1:
|
104 |
+
audio = librosa.to_mono(audio.transpose(1, 0))
|
105 |
+
input_path = os.path.join(self.input_temp_dir, input_filename)
|
106 |
+
soundfile.write(input_path, audio, sampling_rate, format="wav")
|
107 |
+
|
108 |
+
self.set_arch_setting_value(arch, setting1, setting2)
|
109 |
+
|
110 |
+
seperator = uvr.process(
|
111 |
+
model_name=model_name,
|
112 |
+
arch_type=arch,
|
113 |
+
audio_file=input_path,
|
114 |
+
export_path=self.export_path,
|
115 |
+
is_model_sample_mode=root.model_sample_mode_var.get(),
|
116 |
+
set_progress_func=set_progress_func,
|
117 |
+
)
|
118 |
+
|
119 |
+
primary_audio = None
|
120 |
+
secondary_audio = None
|
121 |
+
msg = ""
|
122 |
+
if not seperator.is_secondary_stem_only:
|
123 |
+
primary_stem_path = os.path.join(seperator.export_path, f"{seperator.audio_file_base}_({seperator.primary_stem}).wav")
|
124 |
+
audio, rate = soundfile.read(primary_stem_path)
|
125 |
+
primary_audio = (rate, audio)
|
126 |
+
msg += f"{seperator.primary_stem} saved at {primary_stem_path}\n"
|
127 |
+
if not seperator.is_primary_stem_only:
|
128 |
+
secondary_stem_path = os.path.join(seperator.export_path, f"{seperator.audio_file_base}_({seperator.secondary_stem}).wav")
|
129 |
+
audio, rate = soundfile.read(secondary_stem_path)
|
130 |
+
secondary_audio = (rate, audio)
|
131 |
+
msg += f"{seperator.secondary_stem} saved at {secondary_stem_path}\n"
|
132 |
+
|
133 |
+
os.remove(input_path)
|
134 |
+
|
135 |
+
return primary_audio, secondary_audio, msg
|