|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
|
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
response += token |
|
yield response |
|
|
|
|
|
with gr.Blocks() as demo: |
|
system_message = gr.Textbox( |
|
label="System Message", |
|
value="You are a helpful assistant.", |
|
lines=2, |
|
) |
|
chat_history = gr.State([]) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=0.8): |
|
chatbot = gr.Chatbot() |
|
with gr.Column(scale=0.2): |
|
max_tokens = gr.Slider( |
|
minimum=1, maximum=512, step=1, value=128, label="Max Tokens" |
|
) |
|
temperature = gr.Slider( |
|
minimum=0, maximum=1, step=0.01, value=0.7, label="Temperature" |
|
) |
|
top_p = gr.Slider( |
|
minimum=0, maximum=1, step=0.01, value=1, label="Top-p" |
|
) |
|
|
|
user_input = gr.Textbox(show_label=False, placeholder="Type your message here...") |
|
|
|
def user_interaction(message, history, system_message, max_tokens, temperature, top_p): |
|
bot_message = next(respond(message, history, system_message, max_tokens, temperature, top_p)) |
|
history.append((message, bot_message)) |
|
return history, history |
|
|
|
user_input.submit( |
|
user_interaction, |
|
inputs=[user_input, chat_history, system_message, max_tokens, temperature, top_p], |
|
outputs=[chatbot, chat_history], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|