|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
model_name = "HuggingFaceH4/zephyr-7b-beta" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16) |
|
|
|
|
|
custom_system_content = """ |
|
You are a helpful chatbot designed to assist users with any questions or tasks they may have. |
|
Please provide thoughtful and concise responses. |
|
""" |
|
|
|
|
|
def chatbot_response(user_input): |
|
inputs = tokenizer(custom_system_content + user_input, return_tensors="pt") |
|
outputs = model.generate(**inputs, max_length=256) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return response[len(custom_system_content):] |
|
|
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
gr.Markdown("<h2>Zephyr-7B Chatbot</h2>") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
user_input = gr.Textbox(label="Your message", placeholder="Type your message here...") |
|
chatbot_output = gr.Chatbot(label="Chatbot Response", placeholder="Chatbot will respond here...") |
|
|
|
with gr.Column(): |
|
submit_btn = gr.Button("Send") |
|
|
|
submit_btn.click(fn=chatbot_response, inputs=user_input, outputs=chatbot_output) |
|
|
|
demo.launch() |
|
|