Spaces:
Sleeping
Sleeping
File size: 1,133 Bytes
15640ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import gradio as gr
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
import torch
# Load the Microsoft Phi-3.5-mini-instruct model
model_name = "microsoft/phi-3.5-mini-instruct"
processor = BlipProcessor.from_pretrained(model_name)
model = BlipForConditionalGeneration.from_pretrained(model_name)
# Define the image classification function
def classify_image(image):
# Preprocess the image
inputs = processor(images=image, return_tensors="pt")
pixel_values = inputs["pixel_values"]
# Generate the classification
with torch.no_grad():
generated_ids = model.generate(pixel_values=pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_text
# Create a Gradio interface
iface = gr.Interface(
fn=classify_image,
inputs=gr.Image(type="pil"),
outputs=gr.Textbox(label="Image Classification"),
title="Image Context Classification",
description="Upload an image to classify its context using Microsoft's Phi-3.5-mini-instruct model."
)
# Launch the interface
iface.launch()
|