Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,6 +8,10 @@ import numpy as np
|
|
8 |
# Load pre-trained ResNet50 model + higher level layers
|
9 |
model = ResNet50(weights='imagenet')
|
10 |
|
|
|
|
|
|
|
|
|
11 |
def classify_image(img):
|
12 |
# Resize the image to 224x224 pixels (required input size for ResNet50)
|
13 |
img = img.resize((224, 224))
|
@@ -32,7 +36,7 @@ iface = gr.Interface(
|
|
32 |
outputs=gr.Label(num_top_classes=3), # Output is a label with top 3 predictions
|
33 |
title="Contextual Image Classification",
|
34 |
description="Upload an image, and the model will classify it based on the context.",
|
35 |
-
examples
|
36 |
)
|
37 |
|
38 |
# Launch the interface
|
|
|
8 |
# Load pre-trained ResNet50 model + higher level layers
|
9 |
model = ResNet50(weights='imagenet')
|
10 |
|
11 |
+
|
12 |
+
chameleon = load_img("example_1.jpeg", output_type="pil")
|
13 |
+
|
14 |
+
|
15 |
def classify_image(img):
|
16 |
# Resize the image to 224x224 pixels (required input size for ResNet50)
|
17 |
img = img.resize((224, 224))
|
|
|
36 |
outputs=gr.Label(num_top_classes=3), # Output is a label with top 3 predictions
|
37 |
title="Contextual Image Classification",
|
38 |
description="Upload an image, and the model will classify it based on the context.",
|
39 |
+
examples=[chameleon],
|
40 |
)
|
41 |
|
42 |
# Launch the interface
|