Spaces:
Running
Running
init app
Browse files- app.py +407 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,407 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import random
|
3 |
+
import re
|
4 |
+
import threading
|
5 |
+
import time
|
6 |
+
|
7 |
+
import spaces
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
# Assuming the transformers library is installed
|
12 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
13 |
+
|
14 |
+
# --- Global Settings ---
|
15 |
+
# These variables are placed in the global scope and will be loaded once when the Gradio app starts
|
16 |
+
system_prompt = []
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
|
19 |
+
MODEL_PATHS = {
|
20 |
+
"Embformer-MiniMind-Base (0.1B)": ["HighCWu/Embformer-MiniMind-Base-0.1B", "Embformer-MiniMind-Base-0.1B"],
|
21 |
+
"Embformer-MiniMind-Seqlen512 (0.1B)": ["HighCWu/Embformer-MiniMind-Seqlen512-0.1B", "Embformer-MiniMind-Seqlen512-0.1B"],
|
22 |
+
"Embformer-MiniMind (0.1B)": ["HighCWu/Embformer-MiniMind-0.1B", "Embformer-MiniMind-0.1B"],
|
23 |
+
"Embformer-MiniMind-RLHF (0.1B)": ["HighCWu/Embformer-MiniMind-RLHF-0.1B", "Embformer-MiniMind-RLHF-0.1B"],
|
24 |
+
"Embformer-MiniMind-R1 (0.1B)": ["HighCWu/Embformer-MiniMind-R1-0.1B", "Embformer-MiniMind-R1-0.1B"],
|
25 |
+
}
|
26 |
+
|
27 |
+
# --- Helper Functions (Mostly unchanged) ---
|
28 |
+
|
29 |
+
def process_assistant_content(content, model_source, selected_model_name):
|
30 |
+
"""
|
31 |
+
Processes the model output, converting <think> tags to HTML details elements,
|
32 |
+
and handling content after </think>, filtering out <answer> tags.
|
33 |
+
"""
|
34 |
+
is_r1_model = False
|
35 |
+
if model_source == "API":
|
36 |
+
if 'R1' in selected_model_name:
|
37 |
+
is_r1_model = True
|
38 |
+
else:
|
39 |
+
model_identifier = MODEL_PATHS.get(selected_model_name, ["", ""])[1]
|
40 |
+
if 'R1' in model_identifier:
|
41 |
+
is_r1_model = True
|
42 |
+
|
43 |
+
if not is_r1_model:
|
44 |
+
return content
|
45 |
+
|
46 |
+
# Fully closed <think>...</think> block
|
47 |
+
if '<think>' in content and '</think>' in content:
|
48 |
+
# Using re.split is more robust than finding indices
|
49 |
+
parts = re.split(r'(</think>)', content, 1)
|
50 |
+
think_part = parts[0] + parts[1] # All content from <think> to </think>
|
51 |
+
after_think_part = parts[2] if len(parts) > 2 else ""
|
52 |
+
|
53 |
+
# 1. Process the think part
|
54 |
+
processed_think = re.sub(
|
55 |
+
r'(<think>)(.*?)(</think>)',
|
56 |
+
r'<details style="font-style: italic; background: rgba(222, 222, 222, 0.5); padding: 10px; border-radius: 10px;"><summary style="font-weight:bold;">Reasoning (Click to expand)</summary>\2</details>',
|
57 |
+
think_part,
|
58 |
+
flags=re.DOTALL
|
59 |
+
)
|
60 |
+
|
61 |
+
# 2. Process the part after </think>, filtering <answer> tags
|
62 |
+
# Using re.sub to replace <answer> and </answer> with an empty string
|
63 |
+
processed_after_think = re.sub(r'</?answer>', '', after_think_part)
|
64 |
+
|
65 |
+
# 3. Concatenate the results
|
66 |
+
return processed_think + processed_after_think
|
67 |
+
|
68 |
+
# Only an opening <think>, indicating reasoning is in progress
|
69 |
+
if '<think>' in content and '</think>' not in content:
|
70 |
+
return re.sub(
|
71 |
+
r'<think>(.*?)$',
|
72 |
+
r'<details open style="font-style: italic; background: rgba(222, 222, 222, 0.5); padding: 10px; border-radius: 10px;"><summary style="font-weight:bold;">Reasoning...</summary>\1</details>',
|
73 |
+
content,
|
74 |
+
flags=re.DOTALL
|
75 |
+
)
|
76 |
+
|
77 |
+
# This case should be rare in streaming output, but kept for completeness
|
78 |
+
if '<think>' not in content and '</think>' in content:
|
79 |
+
# Also need to process content after </think>
|
80 |
+
parts = re.split(r'(</think>)', content, 1)
|
81 |
+
think_part = parts[0] + parts[1]
|
82 |
+
after_think_part = parts[2] if len(parts) > 2 else ""
|
83 |
+
|
84 |
+
processed_think = re.sub(
|
85 |
+
r'(.*?)</think>',
|
86 |
+
r'<details style="font-style: italic; background: rgba(222, 222, 222, 0.5); padding: 10px; border-radius: 10px;"><summary style="font-weight:bold;">Reasoning (Click to expand)</summary>\1</details>',
|
87 |
+
think_part,
|
88 |
+
flags=re.DOTALL
|
89 |
+
)
|
90 |
+
processed_after_think = re.sub(r'</?answer>', '', after_think_part)
|
91 |
+
|
92 |
+
return processed_think + processed_after_think
|
93 |
+
|
94 |
+
# If there are no <think> tags, return the content directly
|
95 |
+
return content
|
96 |
+
|
97 |
+
|
98 |
+
def setup_seed(seed):
|
99 |
+
random.seed(seed)
|
100 |
+
np.random.seed(seed)
|
101 |
+
torch.manual_seed(seed)
|
102 |
+
if device != "cpu":
|
103 |
+
torch.cuda.manual_seed(seed)
|
104 |
+
torch.cuda.manual_seed_all(seed)
|
105 |
+
torch.backends.cudnn.deterministic = True
|
106 |
+
torch.backends.cudnn.benchmark = False
|
107 |
+
|
108 |
+
# --- Gradio App Logic ---
|
109 |
+
|
110 |
+
# Gradio uses global variables or functions to load models, similar to st.cache_resource
|
111 |
+
# We cache models and tokenizers in a dictionary to avoid reloading
|
112 |
+
loaded_models = {}
|
113 |
+
|
114 |
+
def load_model_tokenizer_gradio(model_name):
|
115 |
+
"""
|
116 |
+
Gradio version of the model loading function with caching.
|
117 |
+
"""
|
118 |
+
if model_name in loaded_models:
|
119 |
+
# print(f"Using cached model: {model_name}")
|
120 |
+
return loaded_models[model_name]
|
121 |
+
|
122 |
+
# print(f"Loading model: {model_name}...")
|
123 |
+
model_path = MODEL_PATHS[model_name][0]
|
124 |
+
model = AutoModelForCausalLM.from_pretrained(
|
125 |
+
model_path,
|
126 |
+
trust_remote_code=True,
|
127 |
+
cache_dir=".cache",
|
128 |
+
).to(device).eval()
|
129 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
130 |
+
model_path,
|
131 |
+
trust_remote_code=True,
|
132 |
+
cache_dir=".cache",
|
133 |
+
)
|
134 |
+
loaded_models[model_name] = (model, tokenizer)
|
135 |
+
print("Model loaded.")
|
136 |
+
return model, tokenizer
|
137 |
+
|
138 |
+
@spaces.GPU
|
139 |
+
def chat_fn(
|
140 |
+
user_message,
|
141 |
+
history,
|
142 |
+
model_source,
|
143 |
+
# Local model settings
|
144 |
+
selected_model,
|
145 |
+
# API settings
|
146 |
+
api_url,
|
147 |
+
api_model_id,
|
148 |
+
api_model_name,
|
149 |
+
api_key,
|
150 |
+
# Generation parameters
|
151 |
+
history_chat_num,
|
152 |
+
max_new_tokens,
|
153 |
+
temperature
|
154 |
+
):
|
155 |
+
"""
|
156 |
+
Gradio's core chat processing function.
|
157 |
+
It receives the current values of all UI components as input.
|
158 |
+
"""
|
159 |
+
history = history or []
|
160 |
+
|
161 |
+
# Build context for the model based on the passed, unmodified history
|
162 |
+
chat_messages_for_model = []
|
163 |
+
# Limit the number of history turns
|
164 |
+
if history_chat_num > 0 and len(history) > history_chat_num:
|
165 |
+
relevant_history_turns = history[-history_chat_num:]
|
166 |
+
else:
|
167 |
+
relevant_history_turns = history
|
168 |
+
|
169 |
+
for user_msg, assistant_msg in relevant_history_turns:
|
170 |
+
chat_messages_for_model.append({"role": "user", "content": user_msg})
|
171 |
+
if assistant_msg:
|
172 |
+
chat_messages_for_model.append({"role": "assistant", "content": assistant_msg})
|
173 |
+
|
174 |
+
# Add the current user message to the model's context
|
175 |
+
chat_messages_for_model.append({"role": "user", "content": user_message})
|
176 |
+
|
177 |
+
final_chat_messages = system_prompt + chat_messages_for_model
|
178 |
+
|
179 |
+
# Now, update the history for UI display
|
180 |
+
history.extend([*chat_messages_for_model, {"role": "assistant", "content": user_message}])
|
181 |
+
|
182 |
+
# --- Model Invocation ---
|
183 |
+
if model_source == "API":
|
184 |
+
try:
|
185 |
+
from openai import OpenAI
|
186 |
+
client = OpenAI(api_key=api_key, base_url=api_url)
|
187 |
+
|
188 |
+
response = client.chat.completions.create(
|
189 |
+
model=api_model_id,
|
190 |
+
messages=final_chat_messages,
|
191 |
+
stream=True,
|
192 |
+
temperature=temperature
|
193 |
+
)
|
194 |
+
|
195 |
+
answer = ""
|
196 |
+
for chunk in response:
|
197 |
+
content = chunk.choices[0].delta.content or ""
|
198 |
+
answer += content
|
199 |
+
processed_answer = process_assistant_content(answer, model_source, api_model_name)
|
200 |
+
history[-1]["content"] = processed_answer
|
201 |
+
yield history, history
|
202 |
+
|
203 |
+
except Exception as e:
|
204 |
+
history[-1]["content"] = f"API call error: {str(e)}"
|
205 |
+
yield history, history
|
206 |
+
|
207 |
+
else: # Local Model
|
208 |
+
try:
|
209 |
+
model, tokenizer = load_model_tokenizer_gradio(selected_model)
|
210 |
+
|
211 |
+
random_seed = random.randint(0, 2**32 - 1)
|
212 |
+
setup_seed(random_seed)
|
213 |
+
|
214 |
+
new_prompt = tokenizer.apply_chat_template(
|
215 |
+
final_chat_messages,
|
216 |
+
tokenize=False,
|
217 |
+
add_generation_prompt=True
|
218 |
+
)
|
219 |
+
|
220 |
+
inputs = tokenizer(new_prompt, return_tensors="pt", truncation=True).to(device)
|
221 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
222 |
+
|
223 |
+
generation_kwargs = {
|
224 |
+
"input_ids": inputs.input_ids,
|
225 |
+
"attention_mask": inputs.attention_mask,
|
226 |
+
"max_new_tokens": max_new_tokens,
|
227 |
+
"num_return_sequences": 1,
|
228 |
+
"do_sample": True,
|
229 |
+
"pad_token_id": tokenizer.pad_token_id,
|
230 |
+
"eos_token_id": tokenizer.eos_token_id,
|
231 |
+
"temperature": temperature,
|
232 |
+
"top_p": 0.85,
|
233 |
+
"streamer": streamer,
|
234 |
+
}
|
235 |
+
|
236 |
+
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
237 |
+
thread.start()
|
238 |
+
|
239 |
+
answer = ""
|
240 |
+
for new_text in streamer:
|
241 |
+
answer += new_text
|
242 |
+
processed_answer = process_assistant_content(answer, model_source, selected_model)
|
243 |
+
history[-1]["content"] = processed_answer
|
244 |
+
yield history, history
|
245 |
+
except Exception as e:
|
246 |
+
history[-1]["content"] = f"Local model call error: {str(e)}"
|
247 |
+
yield history, history
|
248 |
+
|
249 |
+
# --- Gradio UI Layout ---
|
250 |
+
css = """
|
251 |
+
.gradio-container { font-family: 'sans-serif'; }
|
252 |
+
footer { display: none !important; }
|
253 |
+
"""
|
254 |
+
image_url = "https://chunte-hfba.static.hf.space/images/modern%20Huggies/Huggy%20Sunny%20hello.png"
|
255 |
+
|
256 |
+
# Define example data
|
257 |
+
prompt_datas = [
|
258 |
+
'请介绍一下自己。',
|
259 |
+
'你更擅长哪一个学科?',
|
260 |
+
'鲁迅的《狂人日记》是如何批判封建礼教的?',
|
261 |
+
'我咳嗽已经持续了两周,需要去医院检查吗?',
|
262 |
+
'详细的介绍光速的物理概念。',
|
263 |
+
'推荐一些杭州的特色美食吧。',
|
264 |
+
'请为我讲解“大语言模型”这个概念。',
|
265 |
+
'如何理解ChatGPT?',
|
266 |
+
'Introduce the history of the United States, please.'
|
267 |
+
]
|
268 |
+
|
269 |
+
with gr.Blocks(theme='soft', css=css) as demo:
|
270 |
+
# History state, this is the Gradio equivalent of st.session_state
|
271 |
+
chat_history = gr.State([])
|
272 |
+
chat_input_cache = gr.State("")
|
273 |
+
|
274 |
+
# Top Title and Badge
|
275 |
+
title_html = """
|
276 |
+
<div style="text-align: center;">
|
277 |
+
<h1>Embformer: An Embedding-Weight-Only Transformer Architecture</h1>
|
278 |
+
<div style="display: flex; justify-content: center; align-items: center; gap: 8px; margin-top: 10px;">
|
279 |
+
<a href="https://doi.org/10.5281/zenodo.15736957">
|
280 |
+
<img src="https://img.shields.io/badge/DOI-10.5281%2Fzenodo.15736957-blue.svg" alt="DOI">
|
281 |
+
</a>
|
282 |
+
<a href="https://github.com/HighCWu/embformer">
|
283 |
+
<img src="https://img.shields.io/badge/github-%23121011.svg?style=for-the-badge&logo=github&logoColor=white" alt="code">
|
284 |
+
</a>
|
285 |
+
<a href="https://huggingface.co/collections/HighCWu/embformer-minimind-685be74dc761610439241bd5">
|
286 |
+
<img src="https://img.shields.io/badge/Model-🤗-yellow" alt="model">
|
287 |
+
</a>
|
288 |
+
</div>
|
289 |
+
</div>
|
290 |
+
"""
|
291 |
+
gr.HTML(title_html)
|
292 |
+
gr.Markdown("""
|
293 |
+
This is the official demo of [Embformer: An Embedding-Weight-Only Transformer Architecture](https://doi.org/10.5281/zenodo.15736957).
|
294 |
+
|
295 |
+
**Note**: Since the model dataset used in this demo is derived from the MiniMind dataset, which contains a large proportion of Chinese content, please try to use Chinese as much as possible in the conversation.
|
296 |
+
""")
|
297 |
+
|
298 |
+
with gr.Row():
|
299 |
+
with gr.Column(scale=1, min_width=200):
|
300 |
+
gr.Markdown("### Model Settings")
|
301 |
+
|
302 |
+
# Model source switcher
|
303 |
+
model_source_radio = gr.Radio(["Local Model", "API"], value="Local Model", label="Select Model Source", visible=False)
|
304 |
+
|
305 |
+
# Local model settings
|
306 |
+
with gr.Group(visible=True) as local_model_group:
|
307 |
+
selected_model_dd = gr.Dropdown(
|
308 |
+
list(MODEL_PATHS.keys()),
|
309 |
+
value="Embformer-MiniMind (0.1B)",
|
310 |
+
label="Select Local Model"
|
311 |
+
)
|
312 |
+
|
313 |
+
# API settings
|
314 |
+
with gr.Group(visible=False) as api_model_group:
|
315 |
+
api_url_tb = gr.Textbox("http://127.0.0.1:8000/v1", label="API URL")
|
316 |
+
api_model_id_tb = gr.Textbox("embformer-minimind", label="Model ID")
|
317 |
+
api_model_name_tb = gr.Textbox("Embformer-MiniMind (0.1B)", label="Model Name (for feature detection)")
|
318 |
+
api_key_tb = gr.Textbox("none", label="API Key", type="password")
|
319 |
+
|
320 |
+
# Common generation parameters
|
321 |
+
history_chat_num_slider = gr.Slider(0, 6, value=0, step=2, label="History Turns")
|
322 |
+
max_new_tokens_slider = gr.Slider(256, 8192, value=1024, step=1, label="Max New Tokens")
|
323 |
+
temperature_slider = gr.Slider(0.6, 1.2, value=0.85, step=0.01, label="Temperature")
|
324 |
+
|
325 |
+
# Clear history button
|
326 |
+
clear_btn = gr.Button("🗑️ Clear History")
|
327 |
+
|
328 |
+
with gr.Column(scale=4):
|
329 |
+
gr.Markdown("### Chat")
|
330 |
+
|
331 |
+
chatbot = gr.Chatbot(
|
332 |
+
[],
|
333 |
+
elem_id="chatbot",
|
334 |
+
avatar_images=(None, image_url),
|
335 |
+
type="messages",
|
336 |
+
height=350
|
337 |
+
)
|
338 |
+
chat_input = gr.Textbox(
|
339 |
+
show_label=False,
|
340 |
+
placeholder="Send a message to MiniMind... (Enter to send)",
|
341 |
+
container=False,
|
342 |
+
scale=7,
|
343 |
+
elem_id="chat-textbox",
|
344 |
+
)
|
345 |
+
examples = gr.Examples(
|
346 |
+
examples=prompt_datas,
|
347 |
+
inputs=chat_input, # After clicking, the example content will fill chat_input
|
348 |
+
label="Click an example to ask (will automatically clear chat and continue)"
|
349 |
+
)
|
350 |
+
|
351 |
+
# --- Event Listeners and Bindings ---
|
352 |
+
|
353 |
+
# Show/hide corresponding setting groups when switching model source
|
354 |
+
def toggle_model_source_ui(source):
|
355 |
+
return {
|
356 |
+
local_model_group: gr.update(visible=source == "Local Model"),
|
357 |
+
api_model_group: gr.update(visible=source == "API")
|
358 |
+
}
|
359 |
+
model_source_radio.change(
|
360 |
+
fn=toggle_model_source_ui,
|
361 |
+
inputs=model_source_radio,
|
362 |
+
outputs=[local_model_group, api_model_group]
|
363 |
+
)
|
364 |
+
|
365 |
+
# Define the list of input components for the submit event
|
366 |
+
submit_inputs = [
|
367 |
+
chat_input_cache, chat_history, model_source_radio, selected_model_dd,
|
368 |
+
api_url_tb, api_model_id_tb, api_model_name_tb, api_key_tb,
|
369 |
+
history_chat_num_slider, max_new_tokens_slider, temperature_slider
|
370 |
+
]
|
371 |
+
|
372 |
+
# When chat_input is submitted (user presses enter or an example is clicked), run chat_fn
|
373 |
+
submit_event = chat_input.submit(
|
374 |
+
fn=lambda text: ("", text),
|
375 |
+
inputs=chat_input,
|
376 |
+
outputs=[chat_input, chat_input_cache],
|
377 |
+
).then(
|
378 |
+
fn=chat_fn,
|
379 |
+
inputs=submit_inputs,
|
380 |
+
outputs=[chatbot, chat_history],
|
381 |
+
)
|
382 |
+
|
383 |
+
# Event chain for clicking an example
|
384 |
+
examples.load_input_event.then(
|
385 |
+
fn=lambda text: ("", text, [], []), # A function to clear the history
|
386 |
+
inputs=chat_input,
|
387 |
+
outputs=[chat_input, chat_input_cache, chatbot, chat_history], # This affects the chatbot and chat_history
|
388 |
+
).then(
|
389 |
+
fn=chat_fn, # Use the dedicated run_example function
|
390 |
+
inputs=submit_inputs, # Pass example text and other settings
|
391 |
+
outputs=[chatbot, chat_history],
|
392 |
+
)
|
393 |
+
|
394 |
+
# Clear history button logic
|
395 |
+
def clear_history():
|
396 |
+
return [], []
|
397 |
+
clear_btn.click(fn=clear_history, outputs=[chatbot, chat_history])
|
398 |
+
chatbot.clear(fn=clear_history, outputs=[chatbot, chat_history])
|
399 |
+
|
400 |
+
|
401 |
+
if __name__ == "__main__":
|
402 |
+
# Pre-load the default model on startup
|
403 |
+
print("Pre-loading default model...")
|
404 |
+
load_model_tokenizer_gradio("Embformer-MiniMind (0.1B)")
|
405 |
+
|
406 |
+
# Launch the Gradio app
|
407 |
+
demo.queue().launch(share=False)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers @ git+https://github.com/huggingface/transformers.git@cb0f604
|
2 |
+
gradio<=5.23.0
|
3 |
+
spaces<=0.37.1
|