Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import os | |
| import datetime | |
| import pytz | |
| from pathlib import Path | |
| def current_time(): | |
| current = datetime.datetime.now(pytz.timezone('Asia/Shanghai')).strftime("%Y年-%m月-%d日 %H时:%M分:%S秒") | |
| return current | |
| print(f"[{current_time()}] 开始部署空间...") | |
| print(f"[{current_time()}] 日志:安装 - gsutil") | |
| os.system("pip install gsutil") | |
| print(f"[{current_time()}] 日志:Git - 克隆 Github 的 T5X 训练框架到当前目录") | |
| os.system("git clone --branch=main https://github.com/google-research/t5x") | |
| print(f"[{current_time()}] 日志:文件 - 移动 t5x 到当前目录并重命名为 t5x_tmp 并删除") | |
| os.system("mv t5x t5x_tmp; mv t5x_tmp/* .; rm -r t5x_tmp") | |
| print(f"[{current_time()}] 日志:编辑 - 替换 setup.py 内的文本“jax[tpu]”为“jax”") | |
| os.system("sed -i 's:jax\[tpu\]:jax:' setup.py") | |
| print(f"[{current_time()}] 日志:Python - 使用 pip 安装 当前目录内的 Python 包") | |
| os.system("python3 -m pip install -e .") | |
| print(f"[{current_time()}] 日志:Python - 更新 Python 包管理器 pip") | |
| os.system("python3 -m pip install --upgrade pip") | |
| print(f"[{current_time()}] 日志:安装 - langchain") | |
| os.system("pip install langchain") | |
| print(f"[{current_time()}] 日志:安装 - sentence-transformers") | |
| os.system("pip install sentence-transformers") | |
| print(f"[{current_time()}] 日志:Git - 克隆 Github 的 airio 到当前目录") | |
| os.system("git clone --branch=main https://github.com/google/airio") | |
| print(f"[{current_time()}] 日志:文件 - 移动 airio 到当前目录并重命名为 airio_tmp 并删除") | |
| os.system("mv airio airio_tmp; mv airio_tmp/* .; rm -r airio_tmp") | |
| print(f"[{current_time()}] 日志:Python - 使用 pip 安装 当前目录内的 Python 包") | |
| os.system("python3 -m pip install -e .") | |
| print(f"[{current_time()}] 日志:Git - 克隆 Github 的 MT3 模型到当前目录") | |
| os.system("git clone --branch=main https://github.com/magenta/mt3") | |
| print(f"[{current_time()}] 日志:文件 - 移动 mt3 到当前目录并重命名为 mt3_tmp 并删除") | |
| os.system("mv mt3 mt3_tmp; mv mt3_tmp/* .; rm -r mt3_tmp") | |
| print(f"[{current_time()}] 日志:Python - 使用 pip 从 storage.googleapis.com 安装 jax[cuda11_local] nest-asyncio pyfluidsynth") | |
| os.system("python3 -m pip install jax[cuda11_local] nest-asyncio pyfluidsynth==1.3.0 -e . -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html") | |
| print(f"[{current_time()}] 日志:安装 - 更新 jaxlib") | |
| os.system("pip install --upgrade jaxlib") | |
| print(f"[{current_time()}] 日志:Python - 使用 pip 安装 当前目录内的 Python 包") | |
| os.system("python3 -m pip install -e .") | |
| print(f"[{current_time()}] 日志:安装 - TensorFlow CPU") | |
| os.system("pip install tensorflow_cpu") | |
| print(f"[{current_time()}] 日志:gsutil - 复制 MT3 检查点到当前目录") | |
| os.system("gsutil -q -m cp -r gs://mt3/checkpoints .") | |
| print(f"[{current_time()}] 日志:gsutil - 复制 SoundFont 文件到当前目录") | |
| os.system("gsutil -q -m cp gs://magentadata/soundfonts/SGM-v2.01-Sal-Guit-Bass-V1.3.sf2 .") | |
| print(f"[{current_time()}] 日志:导入 - 必要工具") | |
| import functools | |
| import os | |
| import numpy as np | |
| import tensorflow.compat.v2 as tf | |
| import gin | |
| import jax | |
| import librosa | |
| import note_seq | |
| import seqio | |
| import t5 | |
| import t5x | |
| from mt3 import metrics_utils | |
| from mt3 import models | |
| from mt3 import network | |
| from mt3 import note_sequences | |
| from mt3 import preprocessors | |
| from mt3 import spectrograms | |
| from mt3 import vocabularies | |
| import nest_asyncio | |
| nest_asyncio.apply() | |
| SAMPLE_RATE = 16000 | |
| SF2_PATH = 'SGM-v2.01-Sal-Guit-Bass-V1.3.sf2' | |
| def upload_audio(audio, sample_rate): | |
| return note_seq.audio_io.wav_data_to_samples_librosa( | |
| audio, sample_rate=sample_rate) | |
| print(f"[{current_time()}] 日志:开始包装模型...") | |
| class InferenceModel(object): | |
| """音乐转录的 T5X 模型包装器。""" | |
| def __init__(self, checkpoint_path, model_type='mt3'): | |
| if model_type == 'ismir2021': | |
| num_velocity_bins = 127 | |
| self.encoding_spec = note_sequences.NoteEncodingSpec | |
| self.inputs_length = 512 | |
| elif model_type == 'mt3': | |
| num_velocity_bins = 1 | |
| self.encoding_spec = note_sequences.NoteEncodingWithTiesSpec | |
| self.inputs_length = 256 | |
| else: | |
| raise ValueError('unknown model_type: %s' % model_type) | |
| gin_files = ['/home/user/app/mt3/gin/model.gin', | |
| '/home/user/app/mt3/gin/mt3.gin'] | |
| self.batch_size = 8 | |
| self.outputs_length = 1024 | |
| self.sequence_length = {'inputs': self.inputs_length, | |
| 'targets': self.outputs_length} | |
| self.partitioner = t5x.partitioning.PjitPartitioner( | |
| model_parallel_submesh=None, num_partitions=1) | |
| print(f"[{current_time()}] 日志:构建编解码器") | |
| self.spectrogram_config = spectrograms.SpectrogramConfig() | |
| self.codec = vocabularies.build_codec( | |
| vocab_config=vocabularies.VocabularyConfig( | |
| num_velocity_bins=num_velocity_bins) | |
| ) | |
| self.vocabulary = vocabularies.vocabulary_from_codec(self.codec) | |
| self.output_features = { | |
| 'inputs': seqio.ContinuousFeature(dtype=tf.float32, rank=2), | |
| 'targets': seqio.Feature(vocabulary=self.vocabulary), | |
| } | |
| print(f"[{current_time()}] 日志:创建 T5X 模型") | |
| self._parse_gin(gin_files) | |
| self.model = self._load_model() | |
| print(f"[{current_time()}] 日志:恢复模型检查点") | |
| self.restore_from_checkpoint(checkpoint_path) | |
| def input_shapes(self): | |
| return { | |
| 'encoder_input_tokens': (self.batch_size, self.inputs_length), | |
| 'decoder_input_tokens': (self.batch_size, self.outputs_length) | |
| } | |
| def _parse_gin(self, gin_files): | |
| print(f"[{current_time()}] 日志:解析 gin 文件") | |
| gin_bindings = [ | |
| 'from __gin__ import dynamic_registration', | |
| 'from mt3 import vocabularies', | |
| '[email protected]()', | |
| 'vocabularies.VocabularyConfig.num_velocity_bins=%NUM_VELOCITY_BINS' | |
| ] | |
| with gin.unlock_config(): | |
| gin.parse_config_files_and_bindings( | |
| gin_files, gin_bindings, finalize_config=False) | |
| def _load_model(self): | |
| print(f"[{current_time()}] 日志:加载 T5X 模型") | |
| model_config = gin.get_configurable(network.T5Config)() | |
| module = network.Transformer(config=model_config) | |
| return models.ContinuousInputsEncoderDecoderModel( | |
| module=module, | |
| input_vocabulary=self.output_features['inputs'].vocabulary, | |
| output_vocabulary=self.output_features['targets'].vocabulary, | |
| optimizer_def=t5x.adafactor.Adafactor(decay_rate=0.8, step_offset=0), | |
| input_depth=spectrograms.input_depth(self.spectrogram_config)) | |
| def restore_from_checkpoint(self, checkpoint_path): | |
| print(f"[{current_time()}] 日志:从检查点恢复训练状态") | |
| train_state_initializer = t5x.utils.TrainStateInitializer( | |
| optimizer_def=self.model.optimizer_def, | |
| init_fn=self.model.get_initial_variables, | |
| input_shapes=self.input_shapes, | |
| partitioner=self.partitioner) | |
| restore_checkpoint_cfg = t5x.utils.RestoreCheckpointConfig( | |
| path=checkpoint_path, mode='specific', dtype='float32') | |
| train_state_axes = train_state_initializer.train_state_axes | |
| self._predict_fn = self._get_predict_fn(train_state_axes) | |
| self._train_state = train_state_initializer.from_checkpoint_or_scratch( | |
| [restore_checkpoint_cfg], init_rng=jax.random.PRNGKey(0)) | |
| def _get_predict_fn(self, train_state_axes): | |
| print(f"[{current_time()}] 日志:生成用于解码的预测函数") | |
| def partial_predict_fn(params, batch, decode_rng): | |
| return self.model.predict_batch_with_aux( | |
| params, batch, decoder_params={'decode_rng': None}) | |
| return self.partitioner.partition( | |
| partial_predict_fn, | |
| in_axis_resources=( | |
| train_state_axes.params, | |
| t5x.partitioning.PartitionSpec('data',), None), | |
| out_axis_resources=t5x.partitioning.PartitionSpec('data',) | |
| ) | |
| def predict_tokens(self, batch, seed=0): | |
| print(f"[{current_time()}] 运行:从预处理数据集中预测音符序列") | |
| prediction, _ = self._predict_fn( | |
| self._train_state.params, batch, jax.random.PRNGKey(seed)) | |
| return self.vocabulary.decode_tf(prediction).numpy() | |
| def __call__(self, audio): | |
| filename = os.path.basename(audio) # 获取输入文件的文件名 | |
| print(f"[{current_time()}] 运行:输入文件: {filename}") | |
| with open(audio, 'rb') as fd: | |
| contents = fd.read() | |
| audio = upload_audio(contents,sample_rate=16000) | |
| est_ns = inference_model(audio) | |
| note_seq.sequence_proto_to_midi_file(est_ns, './transcribed.mid') | |
| return './transcribed.mid' | |
| title = "MT3" | |
| description = "MT3:多任务多音轨音乐转录的 Gradio 演示。要使用它,只需上传音频文件,或点击示例以查看效果。更多信息请参阅下面的链接。" | |
| article = "<p style='text-align: center'>出错了?试试把文件转换为MP3后再上传吧~</p><p style='text-align: center'><a href='https://arxiv.org/abs/2111.03017' target='_blank'>MT3: 多任务多音轨音乐转录</a> | <a href='https://github.com/hmjz100/mt3' target='_blank'>Github 仓库</a></p>" | |
| examples=[['canon.flac'], ['download.wav']] | |
| gr.Interface( | |
| inference, | |
| gr.Audio(type="filepath", label="输入"), | |
| outputs=gr.File(label="输出"), | |
| title=title, | |
| description=description, | |
| article=article, | |
| examples=examples | |
| ).launch(server_port=7861) | |