Spaces:
No application file
No application file
| import torch | |
| from torch import nn | |
| from ..dkm import * | |
| from ..encoders import * | |
| def DKMv3( | |
| weights, | |
| h, | |
| w, | |
| symmetric=True, | |
| sample_mode="threshold_balanced", | |
| device=None, | |
| **kwargs | |
| ): | |
| if device is None: | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| gp_dim = 256 | |
| dfn_dim = 384 | |
| feat_dim = 256 | |
| coordinate_decoder = DFN( | |
| internal_dim=dfn_dim, | |
| feat_input_modules=nn.ModuleDict( | |
| { | |
| "32": nn.Conv2d(512, feat_dim, 1, 1), | |
| "16": nn.Conv2d(512, feat_dim, 1, 1), | |
| } | |
| ), | |
| pred_input_modules=nn.ModuleDict( | |
| { | |
| "32": nn.Identity(), | |
| "16": nn.Identity(), | |
| } | |
| ), | |
| rrb_d_dict=nn.ModuleDict( | |
| { | |
| "32": RRB(gp_dim + feat_dim, dfn_dim), | |
| "16": RRB(gp_dim + feat_dim, dfn_dim), | |
| } | |
| ), | |
| cab_dict=nn.ModuleDict( | |
| { | |
| "32": CAB(2 * dfn_dim, dfn_dim), | |
| "16": CAB(2 * dfn_dim, dfn_dim), | |
| } | |
| ), | |
| rrb_u_dict=nn.ModuleDict( | |
| { | |
| "32": RRB(dfn_dim, dfn_dim), | |
| "16": RRB(dfn_dim, dfn_dim), | |
| } | |
| ), | |
| terminal_module=nn.ModuleDict( | |
| { | |
| "32": nn.Conv2d(dfn_dim, 3, 1, 1, 0), | |
| "16": nn.Conv2d(dfn_dim, 3, 1, 1, 0), | |
| } | |
| ), | |
| ) | |
| dw = True | |
| hidden_blocks = 8 | |
| kernel_size = 5 | |
| displacement_emb = "linear" | |
| conv_refiner = nn.ModuleDict( | |
| { | |
| "16": ConvRefiner( | |
| 2 * 512 + 128 + (2 * 7 + 1) ** 2, | |
| 2 * 512 + 128 + (2 * 7 + 1) ** 2, | |
| 3, | |
| kernel_size=kernel_size, | |
| dw=dw, | |
| hidden_blocks=hidden_blocks, | |
| displacement_emb=displacement_emb, | |
| displacement_emb_dim=128, | |
| local_corr_radius=7, | |
| corr_in_other=True, | |
| ), | |
| "8": ConvRefiner( | |
| 2 * 512 + 64 + (2 * 3 + 1) ** 2, | |
| 2 * 512 + 64 + (2 * 3 + 1) ** 2, | |
| 3, | |
| kernel_size=kernel_size, | |
| dw=dw, | |
| hidden_blocks=hidden_blocks, | |
| displacement_emb=displacement_emb, | |
| displacement_emb_dim=64, | |
| local_corr_radius=3, | |
| corr_in_other=True, | |
| ), | |
| "4": ConvRefiner( | |
| 2 * 256 + 32 + (2 * 2 + 1) ** 2, | |
| 2 * 256 + 32 + (2 * 2 + 1) ** 2, | |
| 3, | |
| kernel_size=kernel_size, | |
| dw=dw, | |
| hidden_blocks=hidden_blocks, | |
| displacement_emb=displacement_emb, | |
| displacement_emb_dim=32, | |
| local_corr_radius=2, | |
| corr_in_other=True, | |
| ), | |
| "2": ConvRefiner( | |
| 2 * 64 + 16, | |
| 128 + 16, | |
| 3, | |
| kernel_size=kernel_size, | |
| dw=dw, | |
| hidden_blocks=hidden_blocks, | |
| displacement_emb=displacement_emb, | |
| displacement_emb_dim=16, | |
| ), | |
| "1": ConvRefiner( | |
| 2 * 3 + 6, | |
| 24, | |
| 3, | |
| kernel_size=kernel_size, | |
| dw=dw, | |
| hidden_blocks=hidden_blocks, | |
| displacement_emb=displacement_emb, | |
| displacement_emb_dim=6, | |
| ), | |
| } | |
| ) | |
| kernel_temperature = 0.2 | |
| learn_temperature = False | |
| no_cov = True | |
| kernel = CosKernel | |
| only_attention = False | |
| basis = "fourier" | |
| gp32 = GP( | |
| kernel, | |
| T=kernel_temperature, | |
| learn_temperature=learn_temperature, | |
| only_attention=only_attention, | |
| gp_dim=gp_dim, | |
| basis=basis, | |
| no_cov=no_cov, | |
| ) | |
| gp16 = GP( | |
| kernel, | |
| T=kernel_temperature, | |
| learn_temperature=learn_temperature, | |
| only_attention=only_attention, | |
| gp_dim=gp_dim, | |
| basis=basis, | |
| no_cov=no_cov, | |
| ) | |
| gps = nn.ModuleDict({"32": gp32, "16": gp16}) | |
| proj = nn.ModuleDict( | |
| {"16": nn.Conv2d(1024, 512, 1, 1), "32": nn.Conv2d(2048, 512, 1, 1)} | |
| ) | |
| decoder = Decoder(coordinate_decoder, gps, proj, conv_refiner, detach=True) | |
| encoder = ResNet50(pretrained=False, high_res=False, freeze_bn=False) | |
| matcher = RegressionMatcher( | |
| encoder, | |
| decoder, | |
| h=h, | |
| w=w, | |
| name="DKMv3", | |
| sample_mode=sample_mode, | |
| symmetric=symmetric, | |
| **kwargs | |
| ).to(device) | |
| res = matcher.load_state_dict(weights) | |
| return matcher | |